KUKA Robot Group

Communication

KUKA.Ethernet RSI XML 1.1

For KUKA System Software (KSS) 5.4, 5.5, 7.0

Issued: 10.12.2007 Version: KST Ethernet RSI XML 1.1 V1 en
This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of the KUKA ROBOT GROUP.

Other functions not described in this documentation may be operable in the controller. The user has no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a regular basis, however, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

Publikation: Pub KUKA.EthernetRSIXML 1.1 en
Buchstruktur: KUKA.Ethernet RSI XML 1.1 V1.9
Label: KST Ethernet RSI XML 1.1 V1
Contents

1 Introduction .. 7
1.1 Target group .. 7
1.2 Robot system documentation ... 7
1.3 Representation of warnings and notes .. 7
1.4 Trademarks .. 7
1.5 Terms used .. 8

2 Product description ... 9
2.1 Overview of KUKA.Ethernet RSI XML ... 9
2.2 Functional principle .. 9

3 Safety ... 13
3.1 General .. 13
3.1.1 Liability .. 13
3.1.2 Representation of warnings and notes ... 13
3.1.3 Designated use of the robot system ... 14
3.1.4 EC declaration of conformity and declaration of incorporation 14
3.1.5 Description of the robot system .. 14
3.1.6 Terms used .. 15
3.1.7 Personnel .. 16
3.1.8 Safety features of the robot system ... 18
3.1.9 Overview of the safety features .. 18
3.1.10 ESC safety logic ... 18
3.1.11 Mode selector switch ... 18
3.1.12 Stop reactions .. 20
3.1.13 Workspace, safety zone and danger zone ... 21
3.1.14 Operator safety ... 22
3.1.15 EMERGENCY STOP button ... 22
3.1.16 Enabling switches ... 23
3.1.17 Connection for external enabling switch ... 23
3.1.18 Jog mode ... 24
3.1.19 Mechanical end stops .. 24
3.1.20 Software limit switches ... 24
3.1.21 Overview of operating modes and active safety features 24
3.1.22 Mechanical axis range limitation (option) ... 25
3.1.23 Axis range monitoring (option) .. 25
3.1.24 Release device (option) ... 25
3.1.25 KCP coupler (optional) ... 25
3.1.26 Mechanical end stops ... 26
3.1.27 External safeguards .. 26
3.1.28 Labeling on the robot system ... 26
3.1.29 Safety measures .. 27
3.1.30 General safety measures .. 27
3.1.31 Transportation .. 28
3.1.32 Start-up ... 28
3.1.33 Virus protection and network security .. 29
3.1.34 Programming ... 29

Issued: 10.12.2007 Version: KST Ethernet RSI XML 1.1 V1 en
3.4.6 Simulation ... 29
3.4.7 Automatic mode .. 30
3.4.8 Maintenance and repair .. 30
3.4.9 Decommissioning, storage and disposal 31
3.5 Applied norms and regulations 32

4 Installation ... 35
4.1 System requirements .. 35
4.2 PCI slot assignment ... 35
4.3 Installing KUKA.Ethernet RSI XML 36
4.3.1 Modifying the IP address when using KSS 5.x 37
4.3.2 Modifying the IP address when using KSS 7.0 37
4.4 Uninstalling KUKA.Ethernet RSI XML 37
4.5 Reinstalling KUKA.Ethernet RSI XML 37

5 Programming ... 39
5.1 RSI object ST_COROB .. 39
5.1.1 Creating ST_COROB ... 40
5.1.2 Configuring ST_COROB ... 41
5.1.3 Object inputs of ST_COROB 42
5.1.4 Object outputs of ST_COROB 43
5.2 RSI object ST_ETHERNET ... 45
5.2.1 Creating ST_ETHERNET ... 46
5.2.2 Configuring ST_ETHERNET 47
5.2.3 Defining the configuration file 49
5.2.4 Communication parameters of ST_ETHERNET 50
5.2.5 Object inputs of ST_ETHERNET 51
5.2.6 Activating the internal read function 52
5.2.7 Object outputs of ST_ETHERNET 54
5.2.8 Activating the internal write function 55
5.2.9 Linking ST_ETHERNET in the RSI context 56
5.2.10 Linking inputs ... 56
5.2.11 Linking outputs ... 58

6 Example ... 59
6.1 Sample application .. 59
6.2 Implementing the sample application 59
6.3 Server program Server_ERX.exe 59
6.4 KRL program ERXDemo.src 61
6.4.1 Structure of the XML string when sending data (ERXDemo.src) .. 62
6.4.2 Structure of the XML string when importing data (ERXDemo.src) .. 64
6.5 KRL program ERXDemo_1.src 65
6.5.1 Structure of the XML string when sending data (ERXDemo_1.src) .. 65
6.5.2 Structure of the XML string when importing data (ERXDemo_1.src) ... 67
6.6 Sample source code for server application 69

7 Diagnosis ... 71
7.1 Diagnosis with Telnet .. 71
8 KUKA Service .. 73
 8.1 Requesting support ... 73
 8.2 KUKA Customer Support ... 73

Index .. 79
1 Introduction

1.1 Target group

This documentation is aimed at users with the following knowledge and skills:
- Advanced KRL programming skills
- Advanced knowledge of KUKA.RobotSensorInterface (RSI)
- Advanced knowledge of the robot controller system
- Advanced knowledge of XML
- Advanced knowledge of networks
- Knowledge of object-oriented programming

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

1.2 Robot system documentation

The robot system documentation consists of the following parts:
- Operating instructions for the robot
- Operating instructions for the robot controller
- Operating and programming instructions for the KUKA System Software
- Documentation relating to options and accessories

Each of these sets of instructions is a separate document.

1.3 Representation of warnings and notes

Safety

Warnings marked with this pictogram are relevant to safety and must be observed.

Danger!
This warning means that death, severe physical injury or substantial material damage will occur, if no precautions are taken.

Warning!
This warning means that death, severe physical injury or substantial material damage may occur, if no precautions are taken.

Caution!
This warning means that minor physical injuries or minor material damage may occur, if no precautions are taken.

Notes

Notes marked with this pictogram contain tips to make your work easier or references to further information.

Tips to make your work easier or references to further information.

1.4 Trademarks

Windows is a trademark of Microsoft Corporation.
1.5 Terms used

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Ethernet is a wired data network technology for local area networks (LANs). It allows the exchange of data between the connected devices in the form of data frames.</td>
</tr>
<tr>
<td>Object ID</td>
<td>Each object is assigned a unique identifier by the system when it is created. The object ID can be used to address an RSI object.</td>
</tr>
<tr>
<td>Object parame-</td>
<td>The object parameters are used to adapt the function of an RSI object.</td>
</tr>
<tr>
<td>ters</td>
<td>-parser is a program that syntactically interprets textual components of a document and replaces them with commands or codes.</td>
</tr>
<tr>
<td>RSI context</td>
<td>The RSI context is the entire signal processing programmed with KUKA.RobotSensorInterface and consists of RSI objects and links between the RSI objects.</td>
</tr>
<tr>
<td>RSI object</td>
<td>Each RSI object has a signal functionality and corresponding signal inputs and/or outputs.</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>The Transmission Control Protocol (TCP) is a protocol for data exchange between the devices in a network. TCP establishes a virtual channel between two sockets in a network connection. Data can be transmitted along this channel in both directions. The Internet Protocol (IP) has the task of transporting data packets via a number of networks from a transmitter to a receiver.</td>
</tr>
<tr>
<td>UDP/IP</td>
<td>The User Datagram Protocol (UDP) is a protocol for data exchange between the devices in a network. UDP does not establish a connection to the network.</td>
</tr>
<tr>
<td>XML</td>
<td>The Extensible Markup Language (XML) is a standard for creating machine- and human-readable documents in the form of a specified tree structure.</td>
</tr>
</tbody>
</table>
2 Product description

2.1 Overview of KUKA.Ethernet RSI XML

KUKA.Ethernet RSI XML is an add-on technology package with the following functions:

Functions
- Cyclical data transmission from the robot controller to an external system in the interpolation cycle of 12 ms (e.g. position data, axis angles, operating mode, etc.)
- Cyclical data transmission from an external system to the robot controller in the interpolation cycle of 12 ms (e.g. sensor data)
- Influencing the robot in the interpolation cycle of 12 ms
- Direct intervention in the path planning of the robot

Characteristics
- Reloadable RSI object for communication with an external system, in conformity with KUKA.RobotSensorInterface (RSI)
- Communications module with access to standard Ethernet
- Freely definable inputs and outputs of the communication object
- Data exchange timeout monitoring
- Expandable data frame that is sent to the external system. The data frame consists of a fixed section that is always sent and a freely definable section.

Areas of application
- Implementation of external applications (e.g. transferring computing processes to an external system)
- Implementation of extensive diagnosis and analysis functions on an external system
- Integration of microprocessor-supported sensors with a network connection
- Checking the position of the robot with an external system

Communication
The robot controller communicates with the external system via a real-time-capable point-to-point network link. The exchanged data are transmitted via the Ethernet TCP/IP or UDP/IP protocol as XML strings.

2.2 Functional principle

Description
If signal processing is activated with the communication object ST_COROB or ST_ETHERNET, the robot controller connects to the external system as a client.
The robot controller initiates the cyclical data exchange with a KRC data packet and transfers further KRC data packets to the external system in the interpolation cycle of 12 ms. The external system must respond to the KRC data packets received with a data packet of its own.

A data packet received by the external system must be answered within approx. 10 ms. If the data packet is not received by the robot controller within this period, the response is classified as too late. When the maximum number of external data packets for which a response has been sent too late has been exceeded, the robot interprets this as an error and stops. If signal processing is deactivated, data exchange is also stopped. If the communication object ST_COROB or ST_ETHERNET is deleted, the connection between the robot
controller and the external system is interrupted. Both sides exchange data in
the form of XML strings.

- **ST_COROB**

 (>>> 6.4.1 "Structure of the XML string when sending data (ERX-
 Demo.src)" page 62)

 (>>> 6.4.2 "Structure of the XML string when importing data (ERX-
 Demo.src)" page 64)

- **ST_ETHERNET**

 (>>> 6.5.1 "Structure of the XML string when sending data
 (ERXDemo_1.src)" page 65)

 (>>> 6.5.2 "Structure of the XML string when importing data
 (ERXDemo_1.src)" page 67)
3 Safety

3.1 General

3.1.1 Liability

The device described in these operating instructions is an industrial robot – called “robot system” in the following text – consisting of:

- Robot
- Connecting cables
- Robot controller
- Teach pendant
- Linear unit (optional)
- Positioner (optional)
- Two-axis positioner (optional)
- Top-mounted cabinet (optional)

The robot system is built using state-of-the-art technology and in accordance with the recognized safety rules. Nevertheless, impermissible misuse of the robot system may constitute a risk to life and limb or cause damage to the robot system and to other material property.

The robot system may only be used in perfect technical condition in accordance with its designated use and only by safety-conscious persons who are fully aware of the risks involved in its operation. Use of the robot system is subject to compliance with these operating instructions and with the declaration of incorporation supplied together with the robot system. Any functional disorders affecting the safety of the robot system must be rectified immediately.

Safety information

Safety information cannot be held against the KUKA Robot Group. Even if all safety instructions are followed, this is not a guarantee that the robot system will not cause personal injuries or material damage.

No modifications may be carried out to the robot system without the authorization of the KUKA Robot Group. Additional components (tools, software, etc.), not supplied by KUKA Robot Group, may be integrated into the robot system. The user is liable for any damage these components may cause to the robot system or to other material property.

3.1.2 Representation of warnings and notes

Safety

Warnings marked with this pictogram are relevant to safety and must be observed.

Danger!
This warning means that death, severe physical injury or substantial material damage will occur, if no precautions are taken.

Warning!
This warning means that death, severe physical injury or substantial material damage may occur, if no precautions are taken.

Caution!
This warning means that minor physical injuries or minor material damage may occur, if no precautions are taken.
3.1.3 Designated use of the robot system

The robot system is designed exclusively for the specified applications.

Using the robot system or its options for any other or additional purpose is considered impermissible misuse. The manufacturer cannot be held liable for any damage resulting from such use. The risk lies entirely with the user.

Operating the robot system and its options within the limits of its designated use also involves continuous observance of the operating instructions with particular reference to the maintenance specifications.

Impermissible misuse

Any use or application deviating from the designated use is deemed to be impermissible misuse; examples of such misuse include:

- Transportation of persons and animals
- Use as a climbing aid
- Operation outside the permissible operating parameters
- Use in potentially explosive environments

3.1.4 EC declaration of conformity and declaration of incorporation

Declaration of conformity

The system integrator must issue a declaration of conformity for the overall system in accordance with the Machinery Directive. The declaration of conformity forms the basis for the CE mark for the system. The robot system must be operated in accordance with the applicable national laws, regulations and standards.

The robot controller is CE certified under the EMC Directive and the Low Voltage Directive.

Declaration of incorporation

A declaration of incorporation is provided for the robot system. This declaration of incorporation contains the stipulation that the robot system must not be commissioned until it complies with the provisions of the Machinery Directive.

3.1.5 Description of the robot system

The robot system consists of the following components:

- Robot
- Robot controller
- KCP teach pendant
- Connecting cables
3. Safety

- External axes, e.g. linear unit, two-axis positioner, positioner (optional)
- Top-mounted cabinet (optional)
- Software
- Options, accessories

![Fig. 3-1: Example of a robot system](image)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis range</td>
<td>Range of an axis, in degrees, within which the robot may move. The axis range must be defined for each axis that is to be monitored.</td>
</tr>
<tr>
<td>Workspace</td>
<td>The robot is allowed to move within its workspace. The workspace is derived from the individual axis ranges.</td>
</tr>
<tr>
<td>User</td>
<td>The user of the robot system can be the management, employer or delegated person responsible for use of the robot system.</td>
</tr>
<tr>
<td>Braking distance</td>
<td>The braking distance is the distance covered by the robot and any optional external axes after the stop function has been triggered and before the robot comes to a standstill. The braking distance is part of the danger zone.</td>
</tr>
<tr>
<td>Danger zone</td>
<td>The danger zone consists of the workspace and the braking distances.</td>
</tr>
<tr>
<td>KCP</td>
<td>The KCP (KUKA Control Panel) teach pendant has all the functions required for operating and programming the robot system.</td>
</tr>
</tbody>
</table>
3.2 Personnel

All persons working with the robot system must have read and understood the robot system documentation, including the safety chapter.

Personnel must be instructed, before any work is commenced, in the type of work involved and what exactly it entails as well as any hazards which may exist. Instruction must be repeated after particular incidents or technical modifications.

Personnel include the system integrator responsible for integrating the robot system into the production cell, the user, and the operator or programmer of the robot system.

Installation, exchange, adjustment, operation, maintenance and repair must be performed only as specified in the operating instructions for the relevant component of the robot system and only by personnel specially trained for this purpose.

User

The user of a robot system is responsible for its use. The user must ensure that it can be operated in complete safety and define all safety measures for personnel.

The user should check at specific intervals selected at his own discretion that the personnel attend to their work in a safety-conscious manner, are fully aware of the risks involved during operation and observe the operating instructions for the robot system.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot system</td>
<td>The robot system consists of the robot controller and robot, together with any options (e.g. KUKA linear unit, two-axis positioner, other positioner, top-mounted cabinet).</td>
</tr>
<tr>
<td>Safety zone</td>
<td>The safety zone is situated outside the danger zone.</td>
</tr>
<tr>
<td>STOP 0</td>
<td>In the case of a STOP 0, the drives are deactivated immediately and the brakes are applied. The robot and any external axes (optional) perform path-oriented braking.</td>
</tr>
<tr>
<td>STOP 1</td>
<td>In the case of a STOP 1, the robot and any external axes (optional) perform path-maintaining braking. The drives are deactivated after 1 s and the brakes are applied.</td>
</tr>
<tr>
<td>STOP 2</td>
<td>In the case of a STOP 2, the drives are not deactivated and the brakes are not applied. The robot and any external axes (optional) are braked with a normal braking ramp.</td>
</tr>
<tr>
<td>System integrator</td>
<td>System integrators are people who safely integrate the robot system into a plant and commission it.</td>
</tr>
<tr>
<td>T1</td>
<td>Test mode, Manual Reduced Velocity (<= 250 mm/s)</td>
</tr>
<tr>
<td>T2</td>
<td>Test mode, Manual High Velocity (> 250 mm/s)</td>
</tr>
<tr>
<td>External axis</td>
<td>Motion axis which is not part of the robot but which is controlled using the robot controller, e.g. KUKA linear unit, two-axis positioner, Posiflex</td>
</tr>
</tbody>
</table>
System integrator

The robot system is safely integrated into a plant by the system integrator. The system integrator is responsible for the following tasks:

- Installing the robot system
- Connecting the robot system
- Implementing the required facilities
- Issuing the declaration of conformity
- Attaching the CE mark

Operator

The operator must meet the following preconditions:

- The operator must have read and understood the robot system documentation, including the safety chapter.
- The operator must be trained for the work to be carried out.
- Work on the robot system must only be carried out by qualified personnel. These are people who, due to their specialist training, knowledge and experience, and their familiarization with the relevant standards, are able to assess the work to be carried out and detect any potential dangers.

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

Example

The tasks can be distributed as shown in the following table.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Operator</th>
<th>Programmer</th>
<th>System integrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch robot controller on/off</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Start program</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Select program</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Select operating mode</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Calibration (tool, base)</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Master robot</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Programming</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Start-up</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Repair</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Shutting down</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Work on the electrical and mechanical equipment of the robot system may only be carried out by specially trained personnel.
3.3 Safety features of the robot system

3.3.1 Overview of the safety features

The following safety features are provided with the robot system:

- Operator safety
- EMERGENCY STOP pushbutton
- Enabling switches
- Mode selector switch
- Jog mode
- Mechanical limit stops
- Software limit switches
- Labeling on the robot system
- Mechanical axis range limitation (optional)
- Axis range monitoring (optional)
- Release device (optional)
- KCP coupler (optional)

The function and triggering of the electronic safety equipment are monitored by the ESC safety logic.

Danger!
In the absence of functional safety equipment, the robot system can cause personal injury or material damage. If safety equipment is dismantled or deactivated, the robot system may not be operated.

3.3.2 ESC safety logic

The ESC (Electronic Safety Circuit) safety logic is a dual-channel computer-aided safety system. It permanently monitors all connected safety-relevant components. In the event of a fault or interruption in the safety circuit, the power supply to the drives is shut off, thus bringing the robot system to a standstill.

Depending on the operating mode of the robot system, the ESC safety logic triggers a different stop reaction.

The ESC safety logic monitors the following inputs:

- Operator safety
- Local EMERGENCY STOP
- External EMERGENCY STOP
- Enabling
- Drives OFF
- Drives ON
- Operating modes
- Qualifying inputs

3.3.3 Mode selector switch

The robot system can be operated in the following modes:

- Manual Reduced Velocity (T1)
- Manual High Velocity (T2)
- Automatic (AUT)
- Automatic External (AUT EXT)

The operating mode is selected using the mode selector switch on the KCP. The switch is activated by means of a key which can be removed. If the key is removed, the switch is locked and the operating mode can no longer be changed.

If the operating mode is changed during operation, the drives are immediately switched off. The robot and any external axes (optional) are stopped with a STOP 0.

![Mode selector switch](image)

Fig. 3-2: Mode selector switch

1. T2 (Manual High Velocity)
2. AUT (Automatic)
3. AUT EXT (Automatic External)
4. T1 (Manual Reduced Velocity)

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Use</th>
<th>Velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>For test operation</td>
<td>- Program mode: Programmed velocity, maximum 250 mm/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Jog mode: Jog velocity, maximum 250 mm/s</td>
</tr>
<tr>
<td>T2</td>
<td>For test operation</td>
<td>- Program mode: Programmed velocity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Jog mode: Jog velocity, maximum 250 mm/s</td>
</tr>
</tbody>
</table>
3.3.4 Stop reactions

Stop reactions of the robot system are triggered in response to operator actions or as a reaction to monitoring functions and error messages. The following table shows the different stop reactions according to the operating mode that has been set.

STOP 0, STOP 1 and STOP 2 are the stop definitions according to EN 60204.

<table>
<thead>
<tr>
<th>Trigger</th>
<th>T1, T2</th>
<th>AUT, AUT EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety gate opened</td>
<td>-</td>
<td>Path-maintaining braking (STOP 0)</td>
</tr>
<tr>
<td>EMERGENCY STOP pressed</td>
<td>Path-oriented braking (STOP 0)</td>
<td>Path-maintaining braking (STOP 1)</td>
</tr>
<tr>
<td>Enabling switch released</td>
<td>Path-oriented braking (STOP 0)</td>
<td>-</td>
</tr>
<tr>
<td>Start key released</td>
<td>Ramp-down braking (STOP 2)</td>
<td>-</td>
</tr>
<tr>
<td>"Drives OFF" key pressed</td>
<td>Path-oriented braking (STOP 0)</td>
<td></td>
</tr>
<tr>
<td>STOP key pressed</td>
<td>Ramp-down braking (STOP 2)</td>
<td></td>
</tr>
<tr>
<td>Operating mode changed</td>
<td>Path-oriented braking (STOP 0)</td>
<td></td>
</tr>
<tr>
<td>Encoder error (DSE-RDC connection broken)</td>
<td>Short-circuit braking (STOP 0)</td>
<td></td>
</tr>
<tr>
<td>Motion enable canceled</td>
<td>Ramp-down braking (STOP 2)</td>
<td></td>
</tr>
<tr>
<td>Robot controller switched off</td>
<td>Short-circuit braking (STOP 0)</td>
<td></td>
</tr>
<tr>
<td>Power failure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autonomous, AUT EXT

For robot systems without higher-level controllers

- Only possible with a connected safety circuit
- Program mode: Programmed velocity
- Jog mode: not possible

For robot systems with higher-level controllers, e.g. PLC

- Only possible with a connected safety circuit
- Program mode: Programmed velocity
- Jog mode: not possible
3.3.5 Workspace, safety zone and danger zone

Workspaces are to be restricted to the necessary minimum size. A workspace must be safeguarded using appropriate safeguards.

The safeguards (e.g. safety gate) must be situated inside the safety zone. If a safeguard is triggered, the robot and external axes are braked and come to a stop within the workspace or the braking range.

The danger zone consists of the workspace and the braking distances of the robot and external axes (optional). It must be safeguarded by means of protective barriers to prevent danger to persons or the risk of material damage.

<table>
<thead>
<tr>
<th>Stop reaction</th>
<th>Drives</th>
<th>Brakes</th>
<th>Software</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp-down braking (STOP 2)</td>
<td>Drives remain on.</td>
<td>Brakes remain open.</td>
<td>Normal ramp which is used for acceleration and deceleration.</td>
<td>The path is maintained exactly.</td>
</tr>
<tr>
<td>Path-maintaining braking (STOP 1)</td>
<td>Drives are switched off after 1 second hardware delay.</td>
<td>Brakes are applied after 1 s at latest.</td>
<td>In this time the controller brakes the robot on the path using a steeper stop ramp.</td>
<td>The path is maintained exactly.</td>
</tr>
<tr>
<td>Path-oriented braking (STOP 0)</td>
<td>Drives are switched off immediately.</td>
<td>Brakes are applied immediately.</td>
<td>The controller attempts to brake the robot on the path with the remaining energy. If the voltage is not sufficient, the robot leaves the programmed path.</td>
<td>The path is maintained approximately.</td>
</tr>
<tr>
<td>Short-circuit braking (STOP 0)</td>
<td>Drives are switched off immediately.</td>
<td>Brakes are applied immediately.</td>
<td>Stop initiated by the drive hardware. Energy present in the intermediate circuit is used for braking.</td>
<td>The path is left.</td>
</tr>
</tbody>
</table>

Fig. 3-3: Example of axis range A1
3.3.6 Operator safety

The operator safety input is used for interlocking fixed guards. Safety equipment, such as safety gates, can be connected to the dual-channel input. If nothing is connected to this input, operation in Automatic mode is not possible. Operator safety is not active in the test modes T1 (Manual Reduced Velocity) and T2 (Manual High Velocity).

In the event of a loss of signal during Automatic operation (e.g. safety gate is opened), the drives are deactivated after 1 s and the robot and any external axes (optional) are stopped with a STOP 1. When the signal is applied again at the input (e.g. safety gate closed), Automatic operation can be resumed once the corresponding message has been acknowledged.

Operator safety must be designed in such a way that it is only possible to acknowledge the message from outside.

Operator safety can be connected via the peripheral interface on the robot controller.

3.3.7 EMERGENCY STOP button

The EMERGENCY STOP button for the robot system is located on the KCP. If the EMERGENCY STOP button is pressed in the operating modes T1 (Manual Reduced Velocity) or T2 (Manual High Velocity), the drives are disconnected immediately. The robot and any external axes (optional) are stopped with a STOP 0.

In the Automatic operating modes, the drives are disconnected after 1 s. The robot and any external axes (optional) are stopped with a STOP 1. The EMERGENCY STOP button must be pressed as soon as persons or equipment are endangered. Before operation can be resumed, the EMERGENCY STOP button must be turned to release it and the stop message must be acknowledged.
3.3.8 Enabling switches

There are 3 enabling switches installed on the KCP. The enabling switches have 3 positions:
- Not pressed
- Center position
- Panic position

In the test modes T1 (Manual Reduced Velocity) and T2 (Manual High Velocity), the robot can only be moved if one of the enabling switches is held in the central position. If the enabling switch is released or pressed fully down (panic position), the drives are deactivated immediately and the robot stops with a STOP 0.

![Enabling switches on the KCP](image)

Fig. 3-5: Enabling switches on the KCP

1 - 3 Enabling switches

3.3.9 Connection for external enabling switch

An external enabling switch is required if there is more than one person in the danger zone of the robot system.

The external enabling switch can be connected via the peripheral interface on the robot controller.

An external enabling switch is not included in the scope of supply of the KUKA Robot Group.
3.3.10 Jog mode

In the operating modes T1 (Manual Reduced Velocity) and T2 (Manual High Velocity), the robot can only execute programs in jog mode. This means that it is necessary to hold down an enabling switch and the Start key in order to execute a program. If the enabling switch is released or pressed fully down (panic position), the drives are deactivated immediately and the robot and any external axes (optional) stop with a STOP 0. Releasing the Start key causes the robot system to be stopped with a STOP 2.

3.3.11 Mechanical end stops

The axis ranges of main axes A 1 to A 3 and wrist axis A 5 of the robot are limited by means of mechanical limit stops with a buffer.

Additional mechanical limit stops can be installed on the external axes.

Danger!

If the robot or an external axis hits an obstruction or a buffer on the mechanical end stop or axis range limitation, this can result in material damage to the robot system. The KUKA Robot Group must be consulted before the robot system is put back into operation (>>> 8 "KUKA Service" page 73). The affected buffer must immediately be replaced with a new one. If a robot (or external axis) collides with a buffer at more than 250 mm/s, the robot (or external axis) must be exchanged or recommissioning must be carried out by the KUKA Robot Group.

3.3.12 Software limit switches

The axis ranges of all robot axes are limited by means of adjustable software limit switches. These software limit switches only serve as machine protection and must be adjusted in such a way that the robot cannot hit the mechanical limit stops.

The software limit switches are set during commissioning of a robot system.

Further information is contained in the operating and programming instructions.

3.3.13 Overview of operating modes and active safety features

The following table indicates the operating modes in which the safety features are active.

<table>
<thead>
<tr>
<th>Safety features</th>
<th>T1</th>
<th>T2</th>
<th>AUT</th>
<th>AUT EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator safety</td>
<td>-</td>
<td>-</td>
<td>active</td>
<td>active</td>
</tr>
<tr>
<td>EMERGENCY STOP button</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td>active</td>
</tr>
<tr>
<td>Enabling switches</td>
<td>active</td>
<td>active</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reduced velocity in program mode</td>
<td>active</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jog mode</td>
<td>active</td>
<td>active</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Software limit switches</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td>active</td>
</tr>
</tbody>
</table>
3.3.14 Mechanical axis range limitation (option)

Most robots can be fitted with mechanical axis range limitation in main axes A 1 to A 3. The adjustable axis range limitation systems restrict the working range to the required minimum. This increases personal safety and protection of the system.

This option can be retrofitted.

3.3.15 Axis range monitoring (option)

Most robots can be fitted with dual-channel axis range monitoring systems in main axes A 1 to A 3. The safety zone for an axis can be adjusted and monitored using an axis range monitoring system. This increases personal safety and protection of the system.

This option can be retrofitted.

3.3.16 Release device (option)

Description

The release device can be used to move the robot mechanically after an accident or malfunction. The release device can be used for the main axis drive motors and, depending on the robot variant, also for the wrist axis drive motors. It is only for use in exceptional circumstances and emergencies (e.g. for freeing people). After use of the release device, the affected motors must be exchanged.

Caution!

The motors reach temperatures during operation which can cause burns to the skin. Appropriate safety precautions must be taken.

Procedure

1. Switch off the robot controller and secure it (e.g. with a padlock) to prevent unauthorized persons from switching it on again.
2. Remove the protective cap from the motor
3. Push the release device onto the corresponding motor and move the axis in the desired direction.
 The directions are indicated with arrows on the motors. It is necessary to overcome the resistance of the mechanical motor brake and any other loads acting on the axis.

Warning!

Moving an axis with the release device can damage the motor brake. This can result in personal injury and material damage. After using the release device, the affected motor must be exchanged.

Further information is contained in the robot operating instructions.

3.3.17 KCP coupler (optional)

The KCP coupler allows the KCP to be connected and disconnected with the robot controller running.
3.3.18 External safeguards

EMERGENCY STOP

Additional EMERGENCY STOP devices can be connected via the peripheral interface on the robot controller or linked together by means of higher-level controllers (e.g. PLC).

The input/output signals and any necessary external power supplies must ensure a safe state in the case of an EMERGENCY STOP.

Safety fences

Requirements on safety fences are:

- Safety fences must withstand all forces that are likely to occur in the course of operation, whether from inside or outside the enclosure.
- Safety fences must not, themselves, constitute a hazard.
- It is imperative to comply with the minimum clearances from the danger zone.

Safety gates

Requirements on safety gates are:

- The number of safety gates in the fencing must be kept to a minimum.
- All safety gates must be safeguarded by means of an operator safety system.
- Automatic mode must be prevented until all safety gates are closed.
- For additional protection in Automatic mode, the safety gate can be mechanically locked by means of a safety system.
- If a safety gate is opened in Automatic mode, it must trigger an EMERGENCY STOP function.
- If the safety gate is closed, the robot cannot be started immediately in Automatic mode. The message on the control panel must be acknowledged.

3.3.19 Labeling on the robot system

All plates, labels, symbols and marks constitute safety-relevant parts of the robot system. They must not be modified or removed.

Labeling on the robot system consists of:

- Rating plates

Warning!

If the KCP is disconnected, the system can no longer be deactivated by means of the EMERGENCY STOP button on the KCP. An external EMERGENCY STOP must be connected to the peripheral interface to prevent personal injury and material damage.

Further information is contained in the robot controller operating instructions.

Further information is contained in the corresponding standards and regulations.

Further information is contained in the corresponding standards and regulations.
3. Safety measures

3.4 Safety measures

3.4.1 General safety measures

The robot system may only be used in perfect technical condition in accordance with its designated use and only by safety-conscious persons. Operator errors can result in personal injury and damage to property.

It is important to be prepared for possible movements of the robot system even after the robot controller has been switched off and locked. Incorrect installation (e.g. overload) or mechanical defects (e.g. brake defect) can cause the robot or external axes to sag. If work is to be carried out on a switched-off robot system, the robot and external axes must first be moved into a position in which they are unable to move on their own, whether the payload is mounted or not. If this is not possible, the robot and external axes must be secured by appropriate means.

Danger!
In the absence of functional safety equipment, the robot system can cause personal injury or material damage. If safety equipment is dismantled or deactivated, the robot system may not be operated.

Warning!
The motors reach temperatures during operation which can cause burns to the skin. Contact should be avoided if at all possible. If necessary, appropriate protective equipment must be used.

KCP
If the KCP is not connected, it must be removed from the system, as the EMERGENCY STOP button on the KCP is not functional in such a case.

If there is more than one KCP in operation in the overall system, it must be ensured that the KCPs and EMERGENCY STOP buttons can be unambiguously assigned to the corresponding robot system. There must be no possibility of mixing them up in an emergency situation.

External keyboard, external mouse
An external keyboard and/or external mouse may only be connected during service work (e.g. installation). If a keyboard and/or mouse is connected, the system can no longer be operated safely. If a keyboard and/or mouse is connected, the system must not be operated and there must be no persons within the system.

The KCP must not be used as long as an external keyboard and/or external mouse are connected.

The external keyboard and/or external mouse must be removed as soon as the service work is completed.

Faults
The following tasks must be carried out in the case of faults to the robot system:

- Warning labels
- Safety symbols
- Designation labels
- Cable markings
- Identification plates

Further information can be found in the operating instructions of the robot, linear unit, positioner and robot controller.
- Switch off the robot controller and secure it (e.g. with a padlock) to prevent unauthorized persons from switching it on again.
- Indicate the fault by means of a label with a corresponding warning.
- Keep a record of the faults.
- Eliminate the fault and carry out a function test.

3.4.2 Transportation

Robot
The prescribed transport position of the robot must be observed. Transportation must be carried out in accordance with the robot operating instructions.

Robot controller
The robot controller must be transported and installed in an upright position. Avoid vibrations and impacts during transportation in order to prevent damage to the robot controller.

Transportation must be carried out in accordance with the operating instructions for the robot controller.

External axis (optional)
The prescribed transport position of the external axis (e.g. KUKA linear unit, two-axis positioner, etc.) must be observed. Transportation must be carried out in accordance with the operating instructions for the external axis.

3.4.3 Start-up

Function test
It must be ensured that no persons or objects are present within the danger zone of the robot during the function test.

The following must be checked during the function test:

- The robot system is installed and connected. There are no foreign bodies or destroyed, loose parts on the robot system.
- All safety devices and protective measures are complete and fully functional.
- All electrical connections are correct.
- The peripheral devices are correctly connected.
- The external environment corresponds to the permissible values indicated in the operating instructions.
3. Setting

It must be ensured that the rating plate on the robot controller has the same machine data as those entered in the declaration of incorporation. The machine data on the rating plate of the robot and the external axes (optional) must be entered during start-up.

Caution!
Incorrect machine data can result in material damage. Check that the correct machine data have been loaded; if not, load the correct machine data.

3.4.4 Virus protection and network security

The user of the robot system is responsible for ensuring that the software is always safeguarded with the latest virus protection. If the robot controller is integrated into a network that is connected to the company network or to the Internet, it is advisable to protect this robot network against external risks by means of a firewall.

For optimal use of our products, we recommend that our customers carry out a regular virus scan. Information about security updates can be found at www.kuka.com.

3.4.5 Programming

The following safety measures must be carried out during programming:

- It must be ensured that no persons are present within the danger zone of the robot system during programming.
- New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).
- If the drives are not required, they must be switched off to prevent the robot or the external axes (optional) from being moved unintentionally.
- The robot, tooling or external axes (optional) must never touch or project beyond the safety fence.
- Components, tooling and other objects must not become jammed due to the motion of the robot system, nor must they lead to short-circuits or be liable to fall off.

The following safety measures must be carried out during programming in the danger zone of the robot system:

- The robot and the external axes (optional) must only be moved at Manual Reduced Velocity (max. 250 mm/s). In this way, persons have enough time to move out of the way of hazardous motions of the robot system or to stop the robot system.
- To prevent other persons from being able to move the robot or external axes (optional), the KCP must be kept within reach of the programmer.
- If two or more persons are working in the system at the same time, they must all use an enabling switch. While the robot or external axes (optional) are being moved, all persons must remain in constant visual contact and have an unrestricted view of the robot system.

3.4.6 Simulation

Simulation programs do not correspond exactly to reality. Robot programs created in simulation programs must be tested in the system in Manual Reduced Velocity mode (SSTEP T1). It may be necessary to modify the program.
3.4.7 Automatic mode

Automatic mode is only permissible in compliance with the following safety measures.

- The prescribed safety equipment is present and operational.
- There are no persons in the system.
- The defined working procedures are adhered to.

If the robot or an external axis (optional) comes to a standstill for no apparent reason, the danger zone must not be entered until the EMERGENCY STOP function has been triggered.

3.4.8 Maintenance and repair

The purpose of maintenance and repair work is to ensure that the system is kept operational or, in the event of a fault, to return the system to an operational state. Repair work includes troubleshooting in addition to the actual repair itself.

The following safety measures must be carried out when working on the robot system:

- Carry out work outside the danger zone. If work inside the danger zone is necessary, the user must define additional safety measures to ensure the safe protection of personnel.
- Switch off the robot controller and secure it (e.g. with a padlock) to prevent unauthorized persons from switching it on again. If it is necessary to carry out work with the robot controller switched on, the user must define additional safety measures to ensure the safe protection of personnel.
- If it is necessary to carry out work with the robot controller switched on, this may only be done in operating mode T1.
- Label the system with a sign indicating that work is in progress. This sign must remain in place, even during temporary interruptions to the work.
- The EMERGENCY STOP systems must remain active. If safety equipment is deactivated during maintenance or repair work, it must be reactivated immediately after the work is completed.

Faulty components must be replaced using new components with the same article numbers or equivalent components approved by the KUKA Robot Group for this purpose.

Cleaning and preventive maintenance work is to be carried out in accordance with the operating instructions.

Robot controller

Even when the robot controller is switched off, parts connected to peripheral devices may still carry voltage. The external power sources must therefore be switched off or isolated if work is to be carried out on the robot controller.

The ESD regulations must be adhered to when working on components in the robot controller.

Voltages in excess of 50 V (up to 600 V) can be present in the KPS (KUKA Power Supply), the KSDs (KUKA Servo Drives) and the intermediate-circuit connecting cables up to 5 minutes after the robot controller has been switched off. To prevent life-threatening injuries, no work may be carried out on the robot system in this time.

Foreign matter, such as swarf, water and dust, must be prevented from entering the robot controller.
3. Safety

Counterbalancing system

Some robot variants are equipped with a hydropneumatic, spring or gas cylinder counterbalancing system.

The hydropneumatic and gas cylinder counterbalancing systems are pressure equipment and, as such, are subject to obligatory equipment monitoring. Depending on the robot variant, the counterbalancing systems correspond to category II or III, fluid group 2, of the Pressure Equipment Directive.

The user must comply with the applicable national laws, regulations and standards pertaining to pressure equipment.

The following safety measures must be carried out when working on the counterbalancing system:

- The robot assemblies supported by the counterbalancing systems must be secured.
- Work on the counterbalancing systems must only be carried out by qualified personnel.

Inspection intervals and inspection personnel:

<table>
<thead>
<tr>
<th>Category</th>
<th>Inspection before commissioning*</th>
<th>Internal inspection (≤ 3 years)</th>
<th>Strength test (≤ 10 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Approved inspection agency</td>
<td>Competent person</td>
<td>Competent person</td>
</tr>
<tr>
<td>III</td>
<td>Approved inspection agency</td>
<td>Approved inspection agency</td>
<td>Approved inspection agency</td>
</tr>
</tbody>
</table>

*Inspection by KUKA Robot Group

Hazardous substances

The following safety measures must be carried out when handling hazardous substances:

- Avoid prolonged and repeated intensive contact with the skin.
- Avoid breathing in oil spray or vapors.
- Clean skin and apply skin cream.

To ensure safe use of our products, we recommend that our customers regularly request up-to-date safety data sheets from the manufacturers of hazardous substances.

3.4.9 Decommissioning, storage and disposal

The robot system must be decommissioned, stored and disposed of in accordance with the applicable national laws, regulations and standards.
3.5 Applied norms and regulations

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 418</td>
<td>Safety of machinery: EMERGENCY STOP equipment, functional aspects; principles for design</td>
<td>1993</td>
</tr>
<tr>
<td>EN 563</td>
<td>Safety of machinery: Temperatures of touchable surfaces - Ergonomics data to establish temperature limit values for hot surfaces</td>
<td>2000</td>
</tr>
<tr>
<td>EN 614-1</td>
<td>Safety of machinery: Ergonomic design principles – Part 1: Terms and general principles</td>
<td>1995</td>
</tr>
<tr>
<td>EN 775</td>
<td>Industrial robots: Safety</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Definition</td>
<td>Edition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>EN 61000-4-5</td>
<td>Electromagnetic compatibility (EMC): Part 4-5: Testing and measurement techniques; Surge immunity test</td>
<td>2001</td>
</tr>
<tr>
<td>EN 61000-6-2</td>
<td>Electromagnetic compatibility (EMC): Part 6-2: Generic standards - Immunity for industrial environments</td>
<td>2002</td>
</tr>
<tr>
<td>EN 61000-6-4</td>
<td>Electromagnetic compatibility (EMC): Part 6-4: Generic standards; Emission standard for industrial environments</td>
<td>2002</td>
</tr>
<tr>
<td>EN 61800-3</td>
<td>Adjustable speed electrical power drive systems: Part 3: EMC product standard including specific test methods</td>
<td>2001</td>
</tr>
<tr>
<td>EN ISO 10218-1</td>
<td>Industrial robots: Safety</td>
<td>2006</td>
</tr>
<tr>
<td>EN ISO 12100-1</td>
<td>Safety of machinery: Basic concepts, general principles for design - Part 1: Basic terminology, methodology</td>
<td>2004</td>
</tr>
<tr>
<td>EN ISO 12100-2</td>
<td>Safety of machinery: Basic concepts, general principles for design - Part 2: Technical principles</td>
<td>2004</td>
</tr>
</tbody>
</table>
4 Installation

4.1 System requirements

Hardware
- Robot controller:
 - KR C2
 - KR C2 ed05
 - KR C3
 - KR C2 sr
- External system:
 - processor-supported system with real-time-capable operating system and network card
 - microprocessor-supported sensor with network card for use in sensor applications
- Robot controller: MFC2 or MFC3 with installed KUKA network card if KR C2 ed05 or KR C2 sr is to be used
- Network cable for switch, hub or crossed network cable for direct connection

Software
- KUKA System Software (KSS) 5.4, 5.5, 7.0

External system
- Real-time-capable network card with 10/100 Mbit in full duplex mode
- Real-time communication via TCP/IP protocol
- XML parser for generating XML strings with the data for the robot controller

Recommendation
- XML parser:
 - Microsoft .Net XML parser
 - Gnome parser, SuSE LINUX

4.2 PCI slot assignment

Overview

Fig. 4-1: PCI slots

The PC slots can be fitted with the following plug-in cards:
4.3 Installing KUKA.Ethernet RSI XML

Description
During installation of KUKA.Ethernet RSI XML, a network connection for the real-time communication is assigned to the VxWorks real-time operating system. Depending on the specific robot controller used, VxWorks is assigned the following network connection:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Plug-in card</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interbus card (FOC) (optional) Interbus card (copper) (optional) LPDN scanner card (optional) Profibus master/slave card (optional) CN_EthernetIP card (optional)</td>
</tr>
<tr>
<td>2</td>
<td>LPDN scanner card (optional)</td>
</tr>
<tr>
<td>3</td>
<td>KVGA card</td>
</tr>
<tr>
<td>4</td>
<td>DSE-IBS-C33 AUX card (optional)</td>
</tr>
<tr>
<td>5</td>
<td>MFC3 card</td>
</tr>
<tr>
<td>6</td>
<td>Network card (optional) LPDN scanner card (optional) Profibus master/slave card (optional) LIBO-2PCI card (optional) KUKA modem card (optional)</td>
</tr>
<tr>
<td>7</td>
<td>free</td>
</tr>
</tbody>
</table>

Precondition
- User group “Expert”
- Windows interface (CTRL+ESC)
- Installed network card
- If KUKA.RoboTeam is being used: switches at the network nodes

The IP address range 192.0.1.x is reserved and is disabled for applications. Configuring the VxWorks network connection with this address range results in a system error in the KUKA system software. It is no longer possible to boot the robot controller.

Procedure
1. Start the program **SetupAll.exe** from the CD-ROM.
2. Enter the network address of the robot controller in the window that opens. The files are copied onto the hard drive.

If no window requesting a network address appears, a network interface has already been installed. The IP address can be changed later.

3. Confirm the reboot prompt with **OK**.
4. Reboot the robot controller.
4. Installation

LOG file
A LOG file is created under C:\KRC\ROBOTER\LOG.

4.3.1 Modifying the IP address when using KSS 5.x

Precondition
- User group “Expert”
- Windows interface (CTRL+ESC)

Procedure
1. Open the file C:\Windows\vxWin.ini.
2. Modify the IP address under e={......}.
3. Save and close.
4. Reboot the robot controller.

4.3.2 Modifying the IP address when using KSS 7.0

Precondition
- User group “Expert”
- Windows interface (CTRL+ESC)

Procedure
1. Open the file C:\KRC\ROBOTER\INIT\progress.ini.
2. Modify the IP address under IPADDR_ELPCI.
3. Save and close.
4. Reboot the robot controller.

4.4 Uninstalling KUKA.Ethernet RSI XML

Precondition
- KUKA.Ethernet RSI XML is installed.
- User group “Expert”
- Windows interface (CTRL+ESC)

Procedure
1. Start the UnInstall.exe program in the directory C:\KRC_OPTION\ETHERNETRSI\XML\UNINST. Uninstallation is prepared.
2. Confirm the reboot prompt with OK.
3. Reboot the robot controller.

LOG file
A LOG file is created under C:\KRC\ROBOTER\LOG.

4.5 Reinstalling KUKA.Ethernet RSI XML

Precondition
- KUKA.Ethernet RSI XML has been uninstalled.
- User group “Expert”
- Windows interface (CTRL+ESC)

Procedure
1. Start the ReInstall.exe program in the directory C:\KRC_OPTION\ETHERNETRSI\XML\REINST. Setup is prepared.
2. Confirm the reboot prompt with OK.
3. Reboot the robot controller.

LOG file
A LOG file is created under C:\KRC\ROBOTER\LOG.

During installation, the network card is automatically assigned to the VxWorks kernel. The Windows driver is deleted.
5 Programming

5.1 RSI object ST_COROB

Description

The real-time communication between the robot controller and the external system is implemented using the RSI object ST_COROB. The RSI object ST_COROB must be created, linked and configured in the KRL program.

Further information about programming with RSI commands can be found in the documentation KUKA.RobotSensorInterface (RSI).

On creating the RSI object, the connection with the external system is established. The connection is only terminated when ST_COROB is deleted.

If the RSI object ST_COROB is deleted in the KRL program, it cannot be created again until 2 s after it has been deleted. If ST_COROB is created within the 2 s, the network interface may become blocked.

Elements of the RSI object ST_COROB:

- **Instance parameters**, which are assigned when ST_COROB is created to initialize the RSI object.
- **Object parameters** for adapting the function of ST_COROB.
- **Object inputs** for loading data from the RSI context and forwarding it to the external system.
- **Object outputs** for forwarding received data from the external system to RSI objects.

With signal processing activated, ST_COROB always sends a fixed data frame in the interpolation cycle. This data frame can be expanded to include the data at the object inputs. The data frame to be sent can be expanded to include the following data:

- 6 LONG INTEGER values
- 5 BOOLEAN values
- 1 8-bit LONG INTEGER value

ST_COROB also expects a fixed data frame from the external system. This data frame can be expanded to include the data that should be present at the object outputs for further processing. The imported data frame can be expanded to include the following data:

- 3 x 6 DOUBLE values
- 1 8-bit LONG INTEGER value
5.1.1 Creating ST_COROB

Description
The RSI object ST_COROB is created in conformity with KUKA.RobotSensorInterface (RSI) by means of a command line in the KRL program. When the RSI object is created, the instance parameters must be assigned in order to initialize the RSI object.

Syntax
\[
<\text{Return value}> = \text{ST_COROB}(\text{Object_ID}, \text{Container_ID}, \text{IP_Addr}[], \text{Port}, \text{Debug_Mode})
\]

Explanation of the syntax

<table>
<thead>
<tr>
<th>Instance parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><Return_value></td>
<td>The return value contains the error code after an RSI command has been executed.</td>
</tr>
<tr>
<td>Object_ID</td>
<td>INTEGER variable for the object ID in order to access the RSI object. The value of the variable is automatically assigned by the robot system when the RSI object is created.</td>
</tr>
<tr>
<td>Container_ID</td>
<td>Number of the container in which the RSI object is to be created.</td>
</tr>
<tr>
<td>IP_Addr[]</td>
<td>CHARACTER variable for the IP address of the external system</td>
</tr>
<tr>
<td>Port</td>
<td>Port of the robot controller to which the data packets are to be sent.</td>
</tr>
<tr>
<td>Debug_Mode</td>
<td>Generation of status messages in the message window.</td>
</tr>
<tr>
<td>eCROn</td>
<td>Status messages are displayed.</td>
</tr>
<tr>
<td>eCROff</td>
<td>Status messages are not displayed (default setting for operation).</td>
</tr>
</tbody>
</table>
Example

```plaintext
1  DEF Program( )
2  DECL RSIERR RET
3  INT CoRob
4  CHAR IpAdr[15]
5  ...
6 7  INIT
8 9  ...
10
11  IpAdr[]="192.0.1.2"
12  RET=ST_COROB(CoRob,0,IpAdr[],6008,eCROn)
13
14  ...
15 16  END
```

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>INTEGER variable for the return values</td>
</tr>
<tr>
<td>3</td>
<td>INTEGER variable for the object ID</td>
</tr>
<tr>
<td>4</td>
<td>CHARACTER variable for the IP address of the Windows operating system of the robot controller</td>
</tr>
<tr>
<td>11</td>
<td>IP address of the Windows operating system</td>
</tr>
<tr>
<td>12</td>
<td>Creation of the RSI object ST_COROB</td>
</tr>
</tbody>
</table>

5.1.2 Configuring ST_COROB

Description

The object parameters of the RSI object ST_COROB are used to adapt the function in the program sequence. The object parameters are set in conformity with KUKA.RobotSensorInterface (RSI) using the function ST_SETPARAM.

The following object parameters exist:

<table>
<thead>
<tr>
<th>Object parameter</th>
<th>Description</th>
<th>Range of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>eCRParMaxLate</td>
<td>Maximum number of data packets in a block that may arrive late at the robot controller.</td>
<td>Default value: 10</td>
</tr>
<tr>
<td>eCRParDebug</td>
<td>Generation of status messages in the message window.</td>
<td>eCROn: Status messages are displayed. eCROff: Status messages are not displayed (default setting for operation).</td>
</tr>
</tbody>
</table>
Example

```
1  DEF Program( )
2  DECL RSIERR RET
3  INT CoRob
4  CHAR IpAdr[15]
5  ... 
6  7  INI
8  9  ...
10    IpAdr[]="192.0.1.2"
11  RET=ST_COROB(CoRob,0,IpAdr[],6008,eCRon)
12 13 14  ...
15    RET=ST_SETPARAM(CoRob,eCRParMaxLate,10)
16    RET=ST_SETPARAM(CoRob,eCRParDebug,eCROff)
17    RET=ST_SETPARAM(CoRob,eCRParOutputMode,eCRZeroValue)
18    RET=ST_SETPARAM(CoRob,eCRParErrorFlag,20)
19 20 21  ...
22 23  END
```

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>INTEGER variable for the return values</td>
</tr>
<tr>
<td>3</td>
<td>INTEGER variable for the object ID</td>
</tr>
<tr>
<td>4</td>
<td>CHARACTER variable for the IP address of the Windows operating system of the robot controller</td>
</tr>
<tr>
<td>11</td>
<td>IP address of the Windows operating system</td>
</tr>
<tr>
<td>12</td>
<td>Creation of the RSI object ST_COROB</td>
</tr>
<tr>
<td>16...19</td>
<td>Setting of the object parameters of ST_COROB</td>
</tr>
</tbody>
</table>

5.1.3 Object inputs of ST_COROB

Description

The data frame of ST_COROB can optionally be expanded to include the data at the object inputs of ST_COROB. For this, the object inputs must be linked...
to RSI objects from the RSI context. The data at the object inputs are sent in an XML string to the external system (>>> 6.4.1 "Structure of the XML string when sending data (ERXDemo.src)" page 62).

The data frame to be sent can be expanded to include the following data:

5.1.4 Object outputs of ST_COROB

Description

The imported data frame can optionally be expanded to include the data that should be present at the object outputs of ST_COROB for further processing. In order to be able to process the data further in the RSI context, the object outputs of ST_COROB must be linked to other RSI objects. The imported data must be transmitted by the external system as an XML string (>>> 6.4.2 "Structure of the XML string when importing data (ERXDemo.src)" page 64).

The imported data frame can be expanded to include the following data:

<table>
<thead>
<tr>
<th>Object input</th>
<th>Tag in the XML string</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eCRInEnable</td>
<td>-----</td>
<td>BOOL</td>
<td>Activates all object outputs of ST_COROB in order to forward imported data from the external system to the RSI context</td>
</tr>
<tr>
<td>eCRInX</td>
<td><RGH .../></td>
<td>LONG INT</td>
<td>Transmission of 6 LONG INTEGER values to the external system</td>
</tr>
<tr>
<td>eCRInY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCRInZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCRInA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCRInB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCRInC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCRInBool1</td>
<td><RGH .../></td>
<td>BOOL</td>
<td>Transmission of 5 BOOLEAN values to the external system</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCRInBool5</td>
<td><RGH .../></td>
<td>BOOL</td>
<td></td>
</tr>
<tr>
<td>eCRInDig</td>
<td><Dil .../></td>
<td>LONG INT</td>
<td>Transmission of an 8-bit LONG INTEGER value to the external system</td>
</tr>
</tbody>
</table>

Only those data whose object input is also linked are additionally transmitted to the external system. Data of the correct data type must be present at the object inputs.
The values present at the object outputs are dependent on the following factors:

<table>
<thead>
<tr>
<th>Object output</th>
<th>Tag in the XML string</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eCROutErr</td>
<td>-----</td>
<td>BOOL</td>
<td>Status of the communication between the robot controller and the external system. TRUE = an error has occurred (e.g. communication aborted). FALSE = no error has occurred.</td>
</tr>
<tr>
<td>eCROutX</td>
<td><RKorr .../></td>
<td>DOUBLE</td>
<td>Importing of 3 DOUBLE values for translational corrections in [m]</td>
</tr>
<tr>
<td>eCROutY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA</td>
<td><RKorr .../></td>
<td>DOUBLE</td>
<td>Importing of 3 DOUBLE values for rotational corrections</td>
</tr>
<tr>
<td>eCROutB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA1</td>
<td><AKorr ...></td>
<td>DOUBLE</td>
<td>Importing of 6 DOUBLE values for axis-specific corrections</td>
</tr>
<tr>
<td>eCROutA2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA7</td>
<td><EKorr .../></td>
<td>DOUBLE</td>
<td>Importing of 6 DOUBLE values for axis-specific corrections of external axes</td>
</tr>
<tr>
<td>eCROutA8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutA12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCROutDig</td>
<td><DiO .../></td>
<td>LONG INT</td>
<td>Importing of an 8-bit LONG INTEGER value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object parameter</th>
<th>Object output</th>
<th>Object input</th>
<th>Data packet late</th>
<th>Value present at object output</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRParOutputMode</td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>No</td>
<td>Current value</td>
</tr>
<tr>
<td></td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>eCROutErr</td>
<td>eCRInEnable</td>
<td>Yes</td>
<td>0</td>
</tr>
</tbody>
</table>
5. Programming

5.2 RSI object ST_ETHERNET

Description

The RSI object ST_ETHERNET is a further development of the RSI object ST_COROB, and has the following additional functionalities:

- Message in the event of late data packets arriving acyclically
- Mode for data exchange: “Normal Mode” and “Fast Mode”
- Definition of the communication parameters in an XML file
- User-defined assignment of the object inputs and object outputs
- Selection of the transfer protocol: TCP or UDP
- Bidirectional and unidirectional communication

The real-time communication between the robot controller and the external system is implemented using the RSI object ST_ETHERNET. The RSI object ST_ETHERNET must be created, linked and configured in the KRL program.

Further information about programming with RSI commands can be found in the documentation KUKA.RobotSensorInterface (RSI).

On creating the RSI object, the connection with the external system is established. The connection is only terminated when ST_ETHERNET is deleted.

If the RSI object ST_ETHERNET is deleted in the KRL program, it cannot be created again until 2 s after it has been deleted. If ST_ETHERNET is created within the 2 s, the network interface may become blocked.

Elements of the RSI object ST_ETHERNET:

- **Instance parameters**, which are assigned when ST_ETHERNET is created to initialize the RSI object.
- Object parameters for adapting the function of ST_ETHERNET.
- Object inputs for loading data from the RSI context and forwarding it to the external system.
- Object outputs for forwarding data received from the external system to RSI objects.
- Configuration file for configuring the inputs and outputs.

With signal processing activated, ST_ETHERNET sends and receives a user-defined data set in the interpolation cycle. Unlike with ST_COROB, no fixed data frame is specified here. The user must configure the data set in an XML file.

5.2.1 Creating ST_ETHERNET

Description

The RSI object ST_ETHERNET is created in conformity with KUKA.RobotSensorInterface (RSI) by means of a command line in the KRL program. When the RSI object is created, the instance parameters must be assigned in order to initialize the RSI object.

On creating the object, the connection with the external system is established. Whether binding occurs with the external system is defined in the configuration of the RSI object (>>> 5.2.4 "Communication parameters of ST_ETHERNET" page 50):

- TCP protocol: Binding occurs with the external system.
- UDP protocol: No binding occurs with the external system. Communication is checked in a test cycle.
- UDP protocol and transmit mode “Only Send”: It is not possible to check whether an external system is present.

Syntax

```
<Return value>=ST_ETHERNET(Object_ID,Container_ID,Configuration_file[])
```
5. Programming

Explanation of the syntax

<table>
<thead>
<tr>
<th>Instance parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><Return_value></td>
<td>The return value contains the error code after an RSI command has been executed.</td>
</tr>
<tr>
<td>Object_ID</td>
<td>INTEGER variable for the object ID in order to access the RSI object. The value of the variable is automatically assigned by the robot system when the RSI object is created.</td>
</tr>
<tr>
<td>Container_ID</td>
<td>Number of the container in which the RSI object is to be created.</td>
</tr>
<tr>
<td>Configuration_file[]</td>
<td>CHARACTER variable for the name of the configuration file. The name of the configuration file can also be entered here directly, e.g. “ERXconfig.xml”.</td>
</tr>
</tbody>
</table>

Example

```st
1  DEF Program( )
2  DECL RSIERR RET
3  INT hEthernet
4  
5  ... 
6  
7  INI
8  
9  ... 
10  
11  RET = ST_ETHERNET(hEthernet,0,"ERXconfig.xml")
12  
13  ... 
14  
15  END
```

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>INTEGER variable for the return values</td>
</tr>
<tr>
<td>3</td>
<td>INTEGER variable for the object ID</td>
</tr>
<tr>
<td>11</td>
<td>Creation of the RSI object ST_ETHERNET</td>
</tr>
</tbody>
</table>

5.2.2 Configuring ST_ETHERNET

Description

The object parameters of the RSI object ST_ETHERNET are used to adapt the function in the program sequence. The object parameters are set in conformity with KUKA.RobotSensorInterface (RSI) using the function ST_SETPARAM.
The following object parameters exist:

<table>
<thead>
<tr>
<th>Object parameter</th>
<th>Description</th>
<th>Range of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>eERXmax-LatePackages</td>
<td>Maximum number of data packets in a block that may arrive late at the robot controller. If the value is exceeded, an error message is generated and data exchange in the RSI context is terminated.</td>
<td>Default value: 10</td>
</tr>
<tr>
<td>eERXmaxLateInPercent</td>
<td>Maximum percentage of data packets in the sample which are allowed to arrive late. Example: If the default value is used, a maximum of 10% of the data packets are allowed to arrive late. Note: If the value is exceeded, the RSI generates a message if this RSI function has been activated. Further information can be found in the KUKA.RobotSensorInterface documentation.</td>
<td>Default value: 10</td>
</tr>
<tr>
<td>eERXmaxField-OfView</td>
<td>Sample size Example: If the default value is used, 1,000 communication cycles are monitored and the data packets that arrive late are counted. If the parameter eERXmaxLateInPercent is set to 10, a message is generated after 101 late data packets.</td>
<td>Default value: 1,000</td>
</tr>
<tr>
<td>eERXerrorFlag</td>
<td>Setting of a numbered $Flags[indx] in the case of a transmission error index: flag number</td>
<td>1 ... 999</td>
</tr>
<tr>
<td>eERXFastCycle</td>
<td>FALSE: The RSI object operates in “Normal Mode” (default). This means that the external system has 10 ms to respond to a data packet. If the robot controller receives no response within this period, the data packet is classified as late. TRUE: The RSI object operates in “Fast Mode”. This means that sent and received data are processed within the same cycle. The external system has 2 ms to respond to a data packet. If the robot controller receives no response within this period, the data packet is classified as late.</td>
<td>TRUE, FALSE Default value: FALSE</td>
</tr>
</tbody>
</table>
Example

```
1   DEF Program( )
2   DECL RSIERR RET
3   INT hEthernet
4   ...
5   ...
6   INIT
7   ...
8   ...
9   ...
10  RET=ST_ETHERNET(hEthernet,0,"ERXconfig.xml")
11  ...
12  ...
13  ...
14  RET=ST_SETPARAM(hEthernet,eERXmaxLatePackages,3)
15  RET=ST_SETPARAM(hEthernet,eERXmaxLateInPercent,8)
16  RET=ST_SETPARAM(hEthernet,eERXmaxFieldOfView,2345)
17  RET=ST_SETPARAM(hEthernet,eERXFastCycle,1)
18  RET=ST_SETPARAM(hEthernet,eERXerrorFlag,99)
19  ...
20  ...
21  ...
22  END
```

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>INTEGER variable for the return values</td>
</tr>
<tr>
<td>3</td>
<td>INTEGER variable for the object ID</td>
</tr>
<tr>
<td>11</td>
<td>Creation of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>15</td>
<td>Setting the object parameters of ST_ETHERNET</td>
</tr>
</tbody>
</table>

5.2.3 Defining the configuration file

Overview

To enable the robot controller to communicate with the external system, the user must define an XML file in the directory C:\KRC\ROBOTER\INIT. The configuration file is specified and loaded when the RSI object ST_ETHERNET is created.

(>>> 5.2.1 "Creating ST_ETHERNET" page 46)

The structure of the XML file is fixed:

```
<ROOT>
  <CONFIG>
    <SEND>
      <ELEMENTS/>
    </SEND>
    <RECEIVE>
      <ELEMENTS/>
    </RECEIVE>
  </CONFIG>
</ROOT>
```

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><CONFIG ... </CONFIG></td>
<td>Definition of the communication parameters (>>> 5.2.4 "Communication parameters of ST_ETHERNET" page 50)</td>
</tr>
</tbody>
</table>
5.2.4 Communication parameters of ST_ETHERNET

Description

The following communication parameters can be defined in the section `<CONFIG> ... </CONFIG>` of the XML file:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP_NUMBER</td>
<td>IP address of the external system</td>
</tr>
<tr>
<td>PORT</td>
<td>Port number of the external system</td>
</tr>
<tr>
<td>PROTOCOL</td>
<td>Type of transfer protocol</td>
</tr>
<tr>
<td>SENTEPE</td>
<td>Identifier of the external system; freely select-</td>
</tr>
<tr>
<td>PROTOCOLLENGTH</td>
<td>Transmission of the byte length of the protocol</td>
</tr>
<tr>
<td>ONLYSEND</td>
<td>Direction of data exchange</td>
</tr>
</tbody>
</table>

Example

```
1  <CONFIG>
2   <IP_NUMBER>192.0.1.2</IP_NUMBER>
3   <PORT>6008</PORT>
4   <PROTOCOL>TCP</PROTOCOL>
5   <SENETYPE>ImFree</SENETYPE>
6   <PROTOCOLLENGTH>Off</PROTOCOLLENGTH>
7   <ONLYSEND>FALSE</ONLYSEND>
8  </CONFIG>
```

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IP address of the external system: 192.0.1.2</td>
</tr>
<tr>
<td>3</td>
<td>Port number of the external system: 6008</td>
</tr>
<tr>
<td>4</td>
<td>Protocol: TCP</td>
</tr>
<tr>
<td>5</td>
<td>Identifier of the external system: ImFree</td>
</tr>
<tr>
<td>6</td>
<td>The protocol length is not sent</td>
</tr>
<tr>
<td>7</td>
<td>Data exchange in 2 directions: send and receive</td>
</tr>
</tbody>
</table>
5.2.5 Object inputs of ST_ETHERNET

Description
To configure the XML structure for sending data, up to 64 object inputs of ST_ETHERNET can be freely defined. For this, the inputs are linked to RSI objects from the RSI context. The XML format to be sent is generated automatically by the robot controller in accordance with the configuration. The data at the object inputs are sent in an XML string to the external system.

(>>> 6.5.1 "Structure of the XML string when sending data (ERXDemo_1.src)" page 65)

The following parameters of the incoming RSI signal must be defined in the section <SEND> ... </SEND> of the XML file:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAG</td>
<td>Name of the tag that is to be generated</td>
</tr>
<tr>
<td></td>
<td>The following notations are possible:</td>
</tr>
<tr>
<td></td>
<td>■ TAG="Out": The following tag is generated in the XML string: <Out/></Out></td>
</tr>
<tr>
<td></td>
<td>■ TAG="Out.o1": The following tag with attribute is generated in the XML string: <Out o1='''' /></td>
</tr>
<tr>
<td>TYPE</td>
<td>Data type of the incoming RSI signal</td>
</tr>
<tr>
<td></td>
<td>Permissible data types are:</td>
</tr>
<tr>
<td></td>
<td>■ BOOL</td>
</tr>
<tr>
<td></td>
<td>■ LONG</td>
</tr>
<tr>
<td></td>
<td>■ FLOAT</td>
</tr>
<tr>
<td></td>
<td>■ DOUBLE</td>
</tr>
<tr>
<td>INDEX</td>
<td>Number of the object input</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>■ INDEX="54": The value of the RSI signal is read from object input 54.</td>
</tr>
<tr>
<td></td>
<td>Note: The numbering of the object inputs must be consecutive.</td>
</tr>
<tr>
<td>UNIT</td>
<td>Unit of the RSI signal</td>
</tr>
<tr>
<td></td>
<td>A decimal value must be entered.</td>
</tr>
<tr>
<td></td>
<td>Note: Further information on the units for the RSI signals can be found in the KUKA.RobotSensorInterface documentation.</td>
</tr>
</tbody>
</table>

Example

```xml
<SEND>
  <ELEMENTS>
    <ELEMENT TAG="Out.o1" TYPE="BOOL" INDX="1" UNIT="5467" />
    <ELEMENT TAG="Out.o2" TYPE="BOOL" INDX="2" UNIT="5467" />
    <ELEMENT TAG="Out.o3" TYPE="BOOL" INDX="3" UNIT="5467" />
    <ELEMENT TAG="Out.o4" TYPE="BOOL" INDX="4" UNIT="5467" />
    <ELEMENT TAG="Out.o5" TYPE="BOOL" INDX="5" UNIT="5467" />
    <ELEMENT TAG="FTC.Fx" TYPE="FLOAT" INDX="6" UNIT="5467" />
    <ELEMENT TAG="FTC.Fy" TYPE="FLOAT" INDX="7" UNIT="5467" />
    <ELEMENT TAG="FTC.Fz" TYPE="FLOAT" INDX="8" UNIT="5467" />
    <ELEMENT TAG="FTC.Mx" TYPE="FLOAT" INDX="9" UNIT="5467" />
    <ELEMENT TAG="FTC.My" TYPE="FLOAT" INDX="10" UNIT="5467" />
    <ELEMENT TAG="FTC.Mz" TYPE="FLOAT" INDX="11" UNIT="5467" />
    <ELEMENT TAG="Override" TYPE="LONG" INDX="12" UNIT="5467" />
  </ELEMENTS>
</SEND>
```
The following XML structure is generated by the robot controller and sent to the external system:

```xml
<Rob TYPE="KUKA">
  <Out o1="0" o2="1" o3="1" o4="" o5="0"/>
  <FTC Fx="1.234" Fy="54.75" Fz="345.76" Mx="2346.6" My="" Mz="3546"/>
  <Override>90</Override>
  <IPOC>12345634563</IPOC>
</Rob>
```

The keyword IPOC sends the time stamp and is generated automatically.

5.2.6 Activating the internal read function

Description

Large data sets can be structured by activating the internal read function of ST_ETHERNET. This simplifies linking with the RSI objects from the RSI context and saves space in the object inputs of ST_ETHERNET.

The read function is activated using keywords in the “TAG” attribute in the section `<SEND> ... </SEND>` of the XML file.

The keywords must not be used for freely parameterizing the object inputs from the RSI context.

The following keywords are available:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEF_Rist</td>
<td>Send the Cartesian actual position</td>
</tr>
<tr>
<td>DEF_RSol</td>
<td>Send the Cartesian command position</td>
</tr>
<tr>
<td>DEF_AiPos</td>
<td>Send the axis-specific actual position of robot axes A1 to A6</td>
</tr>
<tr>
<td>DEF_ASPos</td>
<td>Send the axis-specific command position of robot axes A1 to A6</td>
</tr>
<tr>
<td>DEF_EiPos</td>
<td>Send the axis-specific actual position of external axes E1 to E6</td>
</tr>
<tr>
<td>DEF_ESPos</td>
<td>Send the axis-specific command position of external axes E1 to E6</td>
</tr>
<tr>
<td>DEF_MACur</td>
<td>Send the motor currents of robot axes A1 to A6</td>
</tr>
<tr>
<td>DEF_MECur</td>
<td>Send the motor currents of external axes E1 to E6</td>
</tr>
<tr>
<td>DEF_Delay</td>
<td>Send the number of late data packets</td>
</tr>
<tr>
<td>DEF_Tech.C1</td>
<td>Send the technology parameters in the advance run with</td>
</tr>
<tr>
<td>DEF_Tech.C6</td>
<td>the function generators 1 to 6</td>
</tr>
<tr>
<td>DEF_Tech.T1</td>
<td>Send the technology parameters in the main run with</td>
</tr>
<tr>
<td>DEF_Tech.T6</td>
<td>the function generators 1 to 6</td>
</tr>
</tbody>
</table>

Notation in the XML file:

If the read function is activated, the robot controller generates the following XML structure in the send protocol:

If the read function is activated, the robot controller generates the following XML structure in the send protocol:

Example

The following XML structure is generated and sent by the robot controller:
5.2.7 Object outputs of ST_ETHERNET

Description

To configure the XML structure for receiving data, up to 64 object outputs of ST_ETHERNET can be freely defined. For this, the outputs are linked to RSI objects from the RSI context. The robot controller expects an XML format which conforms to the configuration. The data at the object outputs are sent in an XML string to the robot controller. (>>> 6.5.2 "Structure of the XML string when importing data (ERXDemo_1.src)" page 67)

The following parameters of the outgoing RSI signal must be defined in the section `<RECEIVE> ... </RECEIVE>` of the XML file:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| TAG | Name of the tag that is to be generated
 The following notations are possible:
 - TAG="Out": The following tag is generated in the XML string: `<Out></Out>`
 - TAG="Out.o1": The following tag with attribute is generated in the XML string: `<Out o1=''' />` |
| TYPE | Data type of the outgoing RSI signal
 Permissible data types are:
 - BOOL
 - STRING
 - LONG
 - FLOAT
 - DOUBLE |
| INDEX | Number of the object output
 Example:
 - INDEX="3": The value of the RSI signal is sent to object output 3.
 Note: The numbering of the object outputs must be consecutive. |
| UNIT | Unit of the RSI signal
 A decimal value must be entered.
 Note: Further information on the units for the RSI signals can be found in the KUKA.RobotSensorInterface documentation. |
| HOLDON | Behavior of the object output with regard to invalid data packets that arrive late
 Possible values:
 - 0: The output is reset.
 - 1: The most recent valid value to arrive remains at the output. |
Example

```xml
<RECEIVE>
  <ELEMENTS>
    <ELEMENT TAG="RKorr.X" TYPE="DOUBLE" INDEX="1" UNIT="1" HOLDON="1" />
    <ELEMENT TAG="RKorr.Y" TYPE="DOUBLE" INDEX="2" UNIT="1" HOLDON="1" />
    <ELEMENT TAG="RKorr.Z" TYPE="DOUBLE" INDEX="3" UNIT="1" HOLDON="1" />
    <ELEMENT TAG="RKorr.A" TYPE="DOUBLE" INDEX="4" UNIT="0" HOLDON="1" />
    <ELEMENT TAG="RKorr.B" TYPE="DOUBLE" INDEX="5" UNIT="0" HOLDON="1" />
    <ELEMENT TAG="RKorr.C" TYPE="DOUBLE" INDEX="6" UNIT="0" HOLDON="1" />
    <ELEMENT TAG="AK.A1" TYPE="DOUBLE" INDEX="7" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="AK.A2" TYPE="DOUBLE" INDEX="8" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="AK.A3" TYPE="DOUBLE" INDEX="9" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="AK.A4" TYPE="DOUBLE" INDEX="10" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="AK.A5" TYPE="DOUBLE" INDEX="11" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="AK.A6" TYPE="DOUBLE" INDEX="12" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="EK.E1" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="EK.E2" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="EK.E3" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="EK.E4" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="EK.E5" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="EK.E6" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
    <ELEMENT TAG="DiO" TYPE="LONG" INDEX="19" UNIT="0" HOLDON="1" />
  </ELEMENTS>
</RECEIVE>
```

The following XML structure is generated and is expected by the robot controller:

```xml
<Sen Type="ImFree">
  <RKorr X="4" Y="7" Z="32" A="6" B="" C="6" />
  <AK A1="2" A2="54" A3="35" A4="76" A5="567" A6="785" />
  <EK E1="67" E2="67" E3="678" E4="3" E5="3" E6="7" />
  <DiO>123</DiO>
  <IPOC>12345634563</IPOC>
</Sen>
```

The time stamp set with the keyword IPOC at the object output is checked. The data packet is only valid if the time stamp corresponds to the time stamp sent previously.

5.2.8 Activating the internal write function

Description

The internal write function of ST_ETHERNET is activated using keywords in the “TAG” attribute in the section `<RECEIVE> ... </RECEIVE>` of the XML file.

The keywords must not be used for freely parameterizing the object outputs from the RSI context.

The following keywords are available:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEF_EStr</td>
<td>Generation of a message in the message window</td>
</tr>
<tr>
<td></td>
<td>If <code><EStr> ...</EStr></code>: Message for information</td>
</tr>
<tr>
<td></td>
<td>If <code><EStr>Error: ...</EStr></code>: Acknowledgeable error message; the robot is stopped.</td>
</tr>
<tr>
<td>DEF_Tech.C1 ...</td>
<td>Write the technology parameters in the advance run with the function generators 1 to 6</td>
</tr>
<tr>
<td>DEF_Tech.C6</td>
<td></td>
</tr>
<tr>
<td>DEF_Tech.T1 ...</td>
<td>Write the technology parameters in the main run with the function generators 1 to 6</td>
</tr>
<tr>
<td>DEF_Tech.T6</td>
<td></td>
</tr>
</tbody>
</table>

Notation in the XML file:
If the write function is activated, the robot controller expects the following XML structure in the receive protocol:

```xml
<EStr>Message!</EStr>
<Tech T11="0.0" T12="0.0" T13="0.0" T14="0.0" T15="0.0" T16="0.0"
    T17="0.0" T18="0.0" T19="0.0" T110="0.0" />
...
<Tech T61="0.0" T62="0.0" T63="0.0" T64="0.0" T65="0.0" T66="0.0"
    T67="0.0" T68="0.0" T69="0.0" T610="0.0" />
<Tech C11="0.0" C12="0.0" C13="0.0" C14="0.0" C15="0.0" C16="0.0"
    C17="0.0" C18="0.0" C19="0.0" C110="0.0" />
...
<Tech C51="0.0" C52="0.0" C53="0.0" C54="0.0" C55="0.0" C56="0.0"
    C57="0.0" C58="0.0" C59="0.0" C510="0.0" />
<RECEIVE>
<ELEMENTS>
<ELEMENT TAG="RKorr.X" TYPE="DOUBLE" INDX="1" UNIT="1" HOLDON="1" />
<ELEMENT TAG="RKorr.Y" TYPE="DOUBLE" INDX="2" UNIT="1" HOLDON="1" />
<ELEMENT TAG="RKorr.Z" TYPE="DOUBLE" INDX="3" UNIT="1" HOLDON="1" />
<ELEMENT TAG="DEF_EStr" TYPE="STRING" INDX="INTERNAL" UNIT="0" />
<ELEMENT TAG="DEF_Tech.C1" TYPE="FLOAT" INDX="INTERNAL" UNIT="0" />
</ELEMENTS>
</RECEIVE>

The following XML structure is generated and is expected by the robot controller:

```xml
<Sen Type="ImFree">
 <EStr/>
 <RKorr X="4" Y="7" Z="32" />
 <Tech C11="0.0" C12="0.0" C13="0.0" C14="0.0" C15="0.0" C16="0.0"
 C17="0.0" C18="0.0" C19="0.0" C110="0.0" />
 <IPOC>123645634563</IPOC>
</Sen>
```

Since the <EStr/> tag is empty, no message is generated. The data in the <RKorr .../> tag are available at the output of the RSI object ST_ETHERNET. The technology parameters are written directly to the controller.

5.2.9 Linking ST_ETHERNET in the RSI context

**Description**

This function ensures that the parameters defined in the XML file in the “TAG” attribute correspond to the links defined in the KRL program.

(>>> 5.2.10 “Linking inputs” page 56)

(>>> 5.2.11 “Linking outputs” page 58)

With RSI objects with independent linking on creation of the object, this procedure is not possible, e.g. ST_MAP_SEN_PREA

5.2.10 Linking inputs

**Syntax**

```xml
<Return_value>=ST_NEWLINK_IN(Object_ID, IDXOut, hEthernet, IDXIn, TAG)
```
5. Programming

### Explanation of the syntax

<table>
<thead>
<tr>
<th>Instance parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;Return_value&gt;</code></td>
<td>The return value contains the error code after an RSI command has been executed.</td>
</tr>
<tr>
<td><code>Object_ID</code></td>
<td>INTEGER variable for the object ID in order to access the RSI object to be assigned to the input of ST_ETHERNET. The value of the variable is automatically assigned by the robot system when the RSI object is created.</td>
</tr>
<tr>
<td><code>IDXOut</code></td>
<td>INTEGER variable for the output of the RSI object with the object ID, i.e. of the RSI object to be assigned to the input of ST_ETHERNET.</td>
</tr>
<tr>
<td><code>hEthernet</code></td>
<td>INTEGER variable for the object ID in order to access the RSI object ST_ETHERNET.</td>
</tr>
<tr>
<td><code>IDXIn</code></td>
<td>INTEGER variable for the input of the RSI object ST_ETHERNET that is to be linked to the output of the RSI object with the object ID.</td>
</tr>
<tr>
<td><code>TAG</code></td>
<td>String defined in the XML file in the attribute “TAG”</td>
</tr>
</tbody>
</table>

### Example

In the XML file, object input 7 of ST_ETHERNET is defined.

```xml
...<SEND>
 <ELEMENTS>
 ...
 <ELEMENT TAG="ST_SOURCE" TYPE="FLOAT" INDX="7" UNIT="3601" />
 ...
 </ELEMENTS>
...<SEND>
```

In the corresponding KRL program, ST_ETHERNET is linked to the RSI object.

```krl
1 DEF Program()
2 DECL RSIERR RET
3 INT hEthernet
4 ...
5 ...
6 7 INI
8 ...
9 ...
10 RET = ST_ETHERNET(hEthernet,0,"ERXconfig.xml")
11 ...
12 RET = ST_SOURCE(hsource,0,UNIT_RSI)
13 RET = ST_NEWLINK_IN(hsource,1,hEthernet,7,"ST_Source")
14 ...
15 END
```

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>INTEGER variable for the return values</td>
</tr>
<tr>
<td>3</td>
<td>INTEGER variable for the object ID</td>
</tr>
<tr>
<td>11</td>
<td>Creation of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>13</td>
<td>Creation of the RSI object ST_SOURCE</td>
</tr>
<tr>
<td>14</td>
<td>Linking of the signal from ST_SOURCE to ST_ETHERNET</td>
</tr>
</tbody>
</table>
5.2.11 Linking outputs

Syntax

\[ \text{<Return\_value>} = \text{ST\_NEWLINK\_OUT}(\text{hEthernet, IDXOut, Objekt-ID, IDXIn, TAG}) \]

Explanation of the syntax

<table>
<thead>
<tr>
<th>Instance parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{&lt;Return_value&gt;}</td>
<td>The return value contains the error code after an RSI command has been executed.</td>
</tr>
<tr>
<td>\text{hEthernet}</td>
<td>INTEGER variable for the object ID in order to access the RSI object ST_ETHERNET.</td>
</tr>
<tr>
<td>\text{IDXOut}</td>
<td>INTEGER variable for the output of the RSI object ST_ETHERNET.</td>
</tr>
<tr>
<td>\text{Objekt-ID}</td>
<td>INTEGER variable for the object ID in order to access the RSI object to be assigned to the output of ST_ETHERNET. The value of the variable is automatically assigned by the robot system when the RSI object is created.</td>
</tr>
<tr>
<td>\text{IDXIn}</td>
<td>INTEGER variable for the input of the RSI object with the object ID, i.e. for the input to be linked to the output of ST_ETHERNET.</td>
</tr>
<tr>
<td>\text{TAG}</td>
<td>String defined in the XML file in the attribute &quot;TAG&quot;.</td>
</tr>
</tbody>
</table>

Example

In the XML file, object output 6 of ST\_ETHERNET is defined.

```
...<RECEIVE>
 <ELEMENTS>
 ...<ELEMENT TAG="RKorr.C" TYPE="DOUBLE" INDX="6" UNIT="0" HOLDON="1" />
 ...
 </ELEMENTS>
</RECEIVE>
```

In the corresponding KRL program, ST\_ETHERNET is linked to the RSI object.

```
1 DEF Program()
2 DECL RSIERR RET
3 INT hEthernet
4
5 ...
6 7 INI
8 9 ...
10 11 RET = ST_ETHERNET(hEthernet,0,"ERXconfig.xml")
12 13 RET = ST_PATHCORR(hPath,0)
14 15 RET = ST_NEWLINK_OUT(hEthernet,6,hPath,3,"RKorr.C")
16 END
```

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>INTEGER variable for the return values</td>
</tr>
<tr>
<td>3</td>
<td>INTEGER variable for the object ID</td>
</tr>
<tr>
<td>11</td>
<td>Creation of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>13</td>
<td>Creation of the RSI object ST_PATHCORR</td>
</tr>
<tr>
<td>14</td>
<td>Linking of the signal from ST_ETHERNET to ST_PATHCORR</td>
</tr>
</tbody>
</table>
6  Example

6.1  Sample application

Description

KUKA.Ethernet RSI XML includes a sample application that can be used to establish communication between a server program and the robot controller. The software is located on the CD-ROM, in the EthernetRSIXML\Demo directory.

The application consists of the following components:

- Server program Server_ERX.exe
- KRL program EKXDEmo.src
- KRL program ERXDemo_1.src
- Configuration file ERXconfig.xml
- Sample source code in C#

6.2  Implementing the sample application

Procedure

1. Copy the contents of the EthernetRSIXML\Demo\Server_app directory to a Windows system with installed .NET Framework.

   The current version of Windows .NET Framework can be obtained free of charge from: http://www.microsoft.com/downloads/.

2. Copy the KRL programs ERXDemo and ERXDemo_1 in the directory EthernetRSIXML\Demo\SRC_KRL\PROGRAM to the program directory of the robot controller.

3. Copy the XML file ERXconfig.xml in the directory EthernetRSIXML\Demo\SRC_KRL\INIT to the directory C:\KRC\ROBOTER\INIT of the robot controller.

4. Start the server program on the external system.

5. Select the network adapter (NetcardIndex) to be used for communication.

6. Set the network address of the external system.

   - For the KRL program ERXDemo.src, set the network address in the KRL program. (>>> 6.4 "KRL program ERXDemo.src" page 61)
   - For the KRL program ERXDemo_1.src, set the network address in the configuration file ERXconfig.xml.

   If no external system is available, communication can be carried out via the “Shared Memory” of the robot controller. In the server application, the network adapter (NetcardIndex) is set in such a way that the network address “192.0.1.2” is displayed.

6.3  Server program Server_ERX.exe

The server program Server_ERX.exe makes it possible to test the connection between the external system and the robot controller by establishing permanent communication to the robot controller.

For this purpose, the received data are evaluated and the current interpolation cycle counter (the time stamp of the packet) is copied to the form that is to be sent. Depending on the setting in the KRL program ERXDemo.src or ERXDemo_1.src, the form can be sent with correction data from the “Moving” area or with zero values.

Functionalities:
- Stable communication: transmission and receipt of data in the interpolation cycle
- Motion correction in X: TOOL, BASE, WORLD corresponding to the setting in the KRL programs
  
  >>> 6.4 "KRL program ERXDemo.src" page 61
  
  >>> 6.5 "KRL program ERXDemo_1.src" page 65
- Free Cartesian motion correction using operator control elements
- Display of the data received
- Display of the data sent

![Fig. 6-1: Server program](image)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Display box</td>
</tr>
<tr>
<td></td>
<td>- If the radio button <strong>KRC Data</strong> is selected, the data that have just been received are displayed.</td>
</tr>
<tr>
<td></td>
<td>- If the radio button <strong>Server Data</strong> is selected, the data that have just been sent are displayed.</td>
</tr>
<tr>
<td></td>
<td>These data are refreshed at the interpolation cycle rate. IPO cycle = 12 ms.</td>
</tr>
<tr>
<td>2</td>
<td>The <strong>NetcardIndex</strong> box refers to the numbering of the system network adapter that has been found.</td>
</tr>
<tr>
<td>3</td>
<td>The port used for the socket connection is set in the <strong>Use Port</strong> box. The server computer awaits the connection request from the robot controller at this port. A free number that is not assigned as a standard service must be selected.</td>
</tr>
<tr>
<td>4</td>
<td>The <strong>Listen!</strong> button can be used to switch the program to listen mode. The first incoming connection request is connected and used as a communications adapter.</td>
</tr>
<tr>
<td>5</td>
<td>If the <strong>Abort!</strong> button is pressed, the program immediately terminates the communication and resets the server.</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 6 | The robot motion can be corrected in the **Moving** group. There are 2 options available for motion correction:  
- Correction in X: direction of the set reference system  
  (>>> 6.4 "KRL program ERXDemo.src" page 61)  
- Free motion in space by an incremental 0.01 mm per interpolation cycle |
| 7 | The possible motion corrections in X are predefined:  
- when the "+/−" button is pressed with \( X' = ±/−0.01 \text{ mm} \)  
- in the sine range with \( X' = \sin(2\pi\cdot0.00133\cdot k) \)  
\( k \) = interpolation cycle rate  
This value can be modified as a percentage in the **Gain** box. |
| 8 | The RSI object \( \text{ST\_COROB} \) or \( \text{ST\_ETHERNET} \) is selected in the **Example** group.  
Assignment to the KRL program:  
- \( \text{ST\_COROB} \): demonstrated with ERXDemo.src  
- \( \text{ST\_ETHERNET} \): demonstrated with ERXDemo_1.src  
If the RSI object \( \text{ST\_ETHERNET} \) is selected, the server can be set to receive without responding, using the checkbox **Only Receive**. |
| 9 | If the RSI object \( \text{ST\_ETHERNET} \) is selected, the transfer protocol can be defined using the slider:  
- **TCP**: On creating the RSI object, a connection is established with the external system.  
- **UDP**: On creating the RSI object, no connection is established with the external system.  
**Note**: The protocol selected here must correspond to the protocol defined in the configuration file. |

### 6.4 KRL program ERXDemo.src

**Description**

The KRL program ERXDemo.src is a simple RSI structure for sending the incoming corrections to the robot. Motion of the robot is controlled purely by means of the corrections, i.e. without a programmed path.

Motion control must be activated via input 1 \( ($\text{IN}[1]$) \). If no I/O card is available, the input can be simulated via the variable \( $\text{IOSIM\_OPT} = \text{TRUE}$ \). If no corrections are desired, this variable can be used to block the motion again.

Once motion control has been activated, the server computer has sole responsibility for the motion direction! Workspaces must be created and the RSI safety regulations must be observed!

**Setting the network address:**

- Enter the network address of the server computer in the line \( \text{clpAdr} = \ldots \).  
- The network address is processed in the next line \( \text{err} = \text{ST\_COROB}(hCoRob, 0, \text{clpAdr}[], 6008, \text{eCROn}) \). The port number of the server must also be specified here.  
- The variable \( \text{eCROn} \) activates the message display in the user interface.

**Setting the correction system:**
The cyclical correction is set and the reference system is specified in the line
'err = ST_ON1(#BASE,1)'.

Possible values:
- #BASE
- #WORLD
- #TOOL

In the case of #BASE and #TOOL, the last reference system used for robot
motion is accepted.

6.4.1 Structure of the XML string when sending data (ERXDemo.src)

**Description**

The XML string sent to the external system has the following structure:

```
- <Rob Type="KUKA" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KrcData.xsd">
- <Dat TaskType="b">
 <ComStatus>continuous</ComStatus>
 <Rlst X="1620.0000" Y="1620.0000" Z="1620.0000" A="100.0000" B="100.0000" C="100.0000" />
 <XIPos A1="-180.0000" A2="-10.0000" A3="20.0000" A4="20.0000" A5="20.0000" A6="20.0000" />
 <ASPos A1="-180.0000" A2="-10.0000" A3="20.0000" A4="20.0000" A5="20.0000" A6="20.0000" />
 <EIPos E1="0.00000" E2="0.00000" E3="0.00000" E4="0.00000" E5="0.00000" E6="0.00000" />
 <ESPos E1="0.00000" E2="0.00000" E3="0.00000" E4="0.00000" E5="0.00000" E6="0.00000" />
 <MACur A1="1620.0000" A2="1620.0000" A3="1620.0000" A4="1620.0000" A5="1620.0000" A6="1620.0000" />
 <MECur E1="1620.0000" E2="1620.0000" E3="1620.0000" E4="1620.0000" E5="1620.0000" E6="1620.0000" />
 <IPOC>64</IPOC>
 <BMode>5</BMode>
 <IPOStat>255</IPOStat>
 <Tech x="1" p6="0" p7="0" p8="0" p6x1="0" p7x1="0" p8x1="0" p6x2="0" p7x2="0" p8x2="0" p6x3="0" p7x3="0" p8x3="0" />
 <RGH X="234" Y="12332" Z="223" A="132" B="123" C="-123" T="10101" />
 <Dil>255</Dil>
 <Tick>0</Tick>
 <RWMode>C</RWMode>
</Dat>
</Rob>
```
<table>
<thead>
<tr>
<th>Tag in the XML string</th>
<th>Description</th>
<th>Object input</th>
</tr>
</thead>
</table>
| ComStatus             | Communication status  
  **start**: data exchange has been started.  
  **continuous**: robot controller has received the first data packet from the external system.  
  **stopped**: data exchange has been stopped. | ----- |
| Rist                  | Cartesian actual position | ----- |
| Rsol                  | Cartesian setpoint position | ----- |
| AIPos                 | Axis-specific actual position of robot axes A1 to A6 | ----- |
| ASPos                 | Axis-specific setpoint position of robot axes A1 to A6 | ----- |
| EIPos                 | Axis-specific actual position of external axes E1 to E6 | ----- |
| ESPos                 | Axis-specific setpoint position of external axes E1 to E6 | ----- |
| MaCur                 | Motor currents of robot axes A1 to A6 | ----- |
| MECur                 | Motor currents of external axes E1 to E6 | ----- |
| IPOC                  | Current time stamp of the data packet | ----- |
| BMode                 | Operating mode of the robot | ----- |
| IPOSTAT               | Status of the interpolator | ----- |
| Tech                  | Technology parameter as a function of x  
  For x=1: $TECHPAR[i, j]$, i=1,...,4 , j=6,...,8  
  For x=2: $TECHPAR[i, j]$, i=2,...,5 , j=6,...,8  
  For x=3: $TECHPAR[i, j]$, i=3,...,6 , j=6,...,8 | ----- |
| RGH                   | Transmission of 6 LONG INTEGER values | eCRInX...eCRInC  
  Transmission is only carried out if the object inputs are linked |
|                       | Transmission of 5 BOOLEAN values | eCRInBool1...eCRInBool5  
  Transmission is only carried out if the object inputs are linked |
| Dil                   | Transmission of an 8-bit LONG INTEGER value | eCRInDig  
  Transmission is only carried out if the object output is linked |
6.4.2 Structure of the XML string when importing data (ERXDemo.src)

**Description**

The XML string imported from the external system has the following structure:

```xml
- <Sen Type="CoRob" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ExternalData.xsd">
- <Dat TaskType="b">
 < Estr >
 <Rkorr X="0.1620" Y="0.1620" Z="0.1620" A="0.2000" B="0.2000" C="0.2000" />
 </ Estr >
 <Akorr A1="20.0000" A2="20.0000" A3="20.0000" A4="20.0000" A5="20.0000" A6="20.0000" />
 <Ekorr E1="120.0000" E2="120.0000" E3="120.0000" E4="120.0000" E5="120.0000" E6="120.0000" />
 <Tech x="2" p3="0" p4="0" p5="0" p3x1="0" p4x1="0" p5x1="0" p3x2="0" p4x2="0" p5x2="0" p3x3="0" p4x3="0" p5x3="0" />
 < DiO >255</ DiO >
 < Ipoc >64</ Ipoc >
</ Dat >
</ Sen >
```

**Tag in the XML string**

<table>
<thead>
<tr>
<th>Tag in the XML string</th>
<th>Description</th>
<th>Object output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tick</td>
<td>Structure element</td>
<td></td>
</tr>
<tr>
<td>RWMode</td>
<td>Motion type and status of the function generator</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Protocol identification, version</td>
<td></td>
</tr>
<tr>
<td>TaskType</td>
<td>Structure element</td>
<td></td>
</tr>
<tr>
<td>Estr</td>
<td>Generation of a message in the message window</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If &lt; Estr &gt; Error: ...&lt; / Estr &gt;:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acknowledgeable error message; the robot is stopped.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other messages are ignored.</td>
<td></td>
</tr>
<tr>
<td>RKorr</td>
<td>Importing of 6 DOUBLE values for Cartesian corrections</td>
<td>eCROutX...eCROutC</td>
</tr>
<tr>
<td>AKorr</td>
<td>Importing of 6 DOUBLE values for axis-specific corrections of robot axes A1 to A6</td>
<td>eCROutA1...eCROutA6</td>
</tr>
<tr>
<td>EKorr</td>
<td>Importing of 6 DOUBLE values for axis-specific corrections of external axes E1 to E6</td>
<td>eCROutA7...eCROutA12</td>
</tr>
</tbody>
</table>
6.5  KRL program ERXDemo_1.src

Description

The KRL program ERXDemo_1.src is a simple RSI structure for sending the incoming corrections to the robot. Motion of the robot is controlled purely by means of the corrections, i.e. without a programmed path.

Once motion control has been activated, the server computer has sole responsibility for the motion direction! Workspaces must be created and the RSI safety regulations must be observed!

Setting the communication parameters:

The XML file ERXconfig.xml is located in the directory C:\KRC\ROBOTER\INIT and contains all the parameters for configuring the communication.

- Enter the network address of the server computer in the line `<IP_NUMBER>`...
- Enter the network address of the server computer in the line `<PORT>`...
- Set the protocol type in the line `<PROTOCOL>`...

Setting the correction system:

The cyclical correction is set and the reference system is specified in the line `err = ST_ON1(#BASE,1)`.

Possible values:

- #BASE
- #WORLD
- #TOOL

In the case of #BASE and #TOOL, the last reference system used for robot motion is accepted.

6.5.1  Structure of the XML string when sending data (ERXDemo_1.src)

Description

The XML string sent to the external system has the following structure:
<Rob TYPE="KUKA">
  <Rist X="1620.0000" Y="0.0000" Z="1910.0000" A="0.0000" B="90.0000"
    C="0.0000"/>
  <Rsol X="1620.0000" Y="0.0000" Z="1910.0000" A="0.0000" B="90.0000"
    C="0.0000"/>
  <AIPos A1="0.0000" A2="-90.0000" A3="90.0000" A4="0.0000"
    A5="0.0000" A6="0.0000"/>
  <ASPos A1="0.0000" A2="-90.0000" A3="90.0000" A4="0.0000"
    A5="0.0000" A6="0.0000"/>
  <EIPos E1="0.0000" E2="0.0000" E3="0.0000" E4="0.0000" E5="0.0000"
    E6="0.0000"/>
  <ESPos E1="0.0000" E2="0.0000" E3="0.0000" E4="0.0000" E5="0.0000"
    E6="0.0000"/>
  <MACur A1="0.0000" A2="0.0000" A3="0.0000" A4="0.0000" A5="0.0000"
    A6="0.0000"/>
  <MECur E1="0.0000" E2="0.0000" E3="0.0000" E4="0.0000" E5="0.0000"
    E6="0.0000"/>
  <Delay D="0"/>
  <Tech C11="0.000000" C12="0.000000" C13="0.000000" C14="0.000000"
    C15="0.000000" C16="0.000000" C17="0.000000" C18="0.000000"
    C19="1.000000" C110="0.000000"/>
  <DiL>0</DiL>
  <Digout o1="0" o2="0" o3="0"/>
  <ST_SOURCE>17.232147</ST_SOURCE>
  <IPOC>4208163634</IPOC>
</Rob>

<table>
<thead>
<tr>
<th>TAG in the XML string</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob TYPE</td>
<td>Protocol identification, version</td>
<td>-----</td>
</tr>
<tr>
<td>Task TYPE</td>
<td>Structure element</td>
<td>-----</td>
</tr>
<tr>
<td>Rist</td>
<td>Cartesian actual position</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>Rsol</td>
<td>Cartesian setpoint position</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>AIPos</td>
<td>Axis-specific actual position of robot axes A1 to A6</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>ASPos</td>
<td>Axis-specific setpoint position of robot axes A1 to A6</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>EIPos</td>
<td>Axis-specific actual position of external axes E1 to E6</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>ESPos</td>
<td>Axis-specific setpoint position of external axes E1 to E6</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>MaCur</td>
<td>Motor currents of robot axes A1 to A6</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>MECur</td>
<td>Motor currents of external axes E1 to E6</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>Delay</td>
<td>Number of late packets</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>Tech</td>
<td>Technology parameter in the advance run of function generator 1</td>
<td>Internal read function of the RSI object ST_ETHERNET</td>
</tr>
<tr>
<td>Dil</td>
<td>Input of data type LONG</td>
<td>KRL link to RSI object ST_DIGIN</td>
</tr>
<tr>
<td>Digout</td>
<td>3 inputs of data type BOOL</td>
<td>KRL link to RSI object ST_DIGOUT</td>
</tr>
</tbody>
</table>
The data set to be sent is generated automatically from the configuration file ERXconfig.xml. The object inputs of ST_ETHERNET are defined in this file:

```xml
<SEND>
 <ELEMENTS>
 <ELEMENT TAG="DEF_R1st" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DEF_RSol1" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DEF_AIPos" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DEF_ASPos" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DEF_EIPos" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DEF_ESPos" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DEF_MACur" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DEF_MECur" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DEF_Delay" TYPE="LONG" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DEF_Tech.C1" TYPE="FLOAT" INDX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="DiL" TYPE="LONG" INDX="1" UNIT="0" />
 <ELEMENT TAG="Digout.o1" TYPE="BOOL" INDX="2" UNIT="0" />
 <ELEMENT TAG="Digout.o2" TYPE="BOOL" INDX="3" UNIT="0" />
 <ELEMENT TAG="Digout.o3" TYPE="BOOL" INDX="4" UNIT="0" />
 <ELEMENT TAG="ST_Source" TYPE="FLOAT" INDX="5" UNIT="3601" />
 </ELEMENTS>
</SEND>
```

6.5.2 Structure of the XML string when importing data (ERXDemo_1.src)

Description

The XML string imported from the external system has the following structure:

```xml
<Sen Type="ImFree">
 <EStr>ERX Message! Free config!</EStr>
 <RKorr X="0.0000" Y="0.0000" Z="0.0000" A="0.0000" B="0.0000"
C="0.0000"
A1="0.0000" A2="0.0000" A3="0.0000" A4="0.0000" A5="0.0000" A6="0.0000"
ETX="0.0000" /
 <AKorr E1="0.0000" E2="0.0000" E3="0.0000" E4="0.0000" E5="0.0000" E6="0.0000" /
 <EKorr E1="0.0000" E2="0.0000" E3="0.0000" E4="0.0000" E5="0.0000" E6="0.0000" />
 <Tech T21="1.09" T22="2.08" T23="3.07" T24="4.06" T25="5.05"
T26="6.04" T27="7.03" T28="8.02" T29="9.01" T210="10.00" />
 <DiO>125</DiO>
 <IPOC></IPOC>
</Sen>
```

<table>
<thead>
<tr>
<th>Tag in the XML string</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sen Type</td>
<td>Protocol identification</td>
<td>-----</td>
</tr>
<tr>
<td>Estr</td>
<td>Generation of a message in the message window</td>
<td>Internal write function of the RSI object ST_ETHERNET. No output exists.</td>
</tr>
</tbody>
</table>

If <EStr> ...</EStr>: Message for information

If <EStr>Error: ...</EStr>: Acknowledgeable error message; the robot is stopped.
The data set received by the robot controller is assigned to the object outputs of ST_ETHERNET via the configuration in the file ERXconfig.xml.

<table>
<thead>
<tr>
<th>Tag in the XML string</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RKorr</td>
<td>Data field of data type DOUBLE</td>
<td>Object output 1 ... 6 of ST_ETHERNET linked to the RSI objects ST_PATHCORR and ST_MAP2SEN_PREA. The values received are saved in $SEN_PREA [1 ... 6].</td>
</tr>
<tr>
<td>AKorr</td>
<td>Data of data type DOUBLE</td>
<td>Without link. Object outputs 7 ... 18 are not further processed in the RSI context.</td>
</tr>
<tr>
<td>EKorr</td>
<td>Data of data type DOUBLE</td>
<td>Without link. Object outputs 7 ... 18 are not further processed in the RSI context.</td>
</tr>
<tr>
<td>Tech</td>
<td>Data of data type FLOAT</td>
<td>Internal write function of the RSI object ST_ETHERNET. The values received are written in the main run to function generator 2.</td>
</tr>
<tr>
<td>DiO</td>
<td>Data of data type LONG</td>
<td>Object output 19 of ST_ETHERNET. This is linked in the KRL program to the RSI object ST_MAP2SEN_PINT. The data are saved in $SEN_PINT [1].</td>
</tr>
<tr>
<td>IPOC</td>
<td>Current time stamp of the data packet</td>
<td>Internal function of the RSI object ST_ETHERNET.</td>
</tr>
</tbody>
</table>
6.6 Sample source code for server application

Sample source code, written in the C# programming language, can be found in the directory EthernetRSIXML\Demo\SRC_Server.

This module illustrates the programming of a network connection to the robot controller. Simple integration is possible, for example, with a console project. For this, the member function "private static void anyfunction()" must be called.

The program generates a second process which communicates with the controller, independently of the application. The basic functionality, the mirroring of the interpolation cycle, is already implemented.

Port 6008 and network card index 0 are set by default. The data to be sent are loaded via the XML model class. The file ExternalData.xml must then be inserted into the project; this file can be found in the directory EthernetRSIXML\Demo\Server_app.

```
<RECEIVE>
 <ELEMENTS>
 <ELEMENT TAG="DEF_EStr" TYPE="STRING" INDEX="INTERNAL" UNIT="0" />
 <ELEMENT TAG="RKorr.X" TYPE="DOUBLE" INDEX="1" UNIT="1" HOLDON="1" />
 <ELEMENT TAG="RKorr.Y" TYPE="DOUBLE" INDEX="2" UNIT="1" HOLDON="1" />
 <ELEMENT TAG="RKorr.Z" TYPE="DOUBLE" INDEX="3" UNIT="1" HOLDON="1" />
 <ELEMENT TAG="RKorr.A" TYPE="DOUBLE" INDEX="4" UNIT="0" HOLDON="1" />
 <ELEMENT TAG="RKorr.B" TYPE="DOUBLE" INDEX="5" UNIT="0" HOLDON="1" />
 <ELEMENT TAG="RKorr.C" TYPE="DOUBLE" INDEX="6" UNIT="0" HOLDON="1" />
 <ELEMENT TAG="AKorr.A1" TYPE="DOUBLE" INDEX="7" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="AKorr.A2" TYPE="DOUBLE" INDEX="8" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="AKorr.A3" TYPE="DOUBLE" INDEX="9" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="AKorr.A4" TYPE="DOUBLE" INDEX="10" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="AKorr.A5" TYPE="DOUBLE" INDEX="11" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="AKorr.A6" TYPE="DOUBLE" INDEX="12" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="EKorr.E1" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="EKorr.E2" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="EKorr.E3" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="EKorr.E4" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="EKorr.E5" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="EKorr.E6" TYPE="DOUBLE" INDEX="13" UNIT="0" HOLDON="0" />
 <ELEMENT TAG="DEF_Tech.T2" TYPE="FLOAT" INDEX="INTERNAL" UNIT="0" />
 </ELEMENTS>
</RECEIVE>
```
7  Diagnosis

7.1  Diagnosis with Telnet

Description

Telnet can be used to check the configuration and communication with VxWorks.

Procedure

1. Click on the Windows Start button.
2. Select the menu option Run....
3. In the Open box, enter the command telnetk 192.0.1.1 and press OK. The Telnet window is opened.

Displaying the IP address

The IP address can be checked using the version command. The address is displayed in the "Boot line" under e=....

Information:

It is only possible to display the IP address with Telnet if using KUKA System Software (KSS) 5.x.

```
-> version
VxWorks (for VxWin RTAcc) version 5.4.2.
Kernel: WIND version 2.5.
Boot line:
esmc(0,1)pc:vxworks h=192.0.1.2 b=192.0.1.1 e=160.160.62.118 u=target
pw=vxworks
value = 92 = 0x5c = '\'
```

Testing the network card

The command ping xxx.xxx.xxx.xxx can be used to check the communication of the VxWorks system network card with the remote station. The command can be aborted by closing the Telnet window.

- Connection present:

```
-> ping "192.0.1.2"
PING 192.0.1.2: 56 data bytes
64 bytes from pc (192.0.1.2): icmp_seq=0. time=0. ms
64 bytes from pc (192.0.1.2): icmp_seq=1. time=0. ms
64 bytes from pc (192.0.1.2): icmp_seq=2. time=0. ms
64 bytes from pc (192.0.1.2): icmp_seq=3. time=0. ms
...
```

- No connection:

```
-> ping "123.123.45.2"
PING 123.123.45.2: 56 data bytes
no answer from 123.123.45.2
```
8  KUKA Service

8.1 Requesting support

Introduction
The KUKA Robot Group documentation offers information on operation and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Information
The following information is required for processing a support request:
- Model and serial number of the robot
- Model and serial number of the controller
- Model and serial number of the linear unit (if applicable)
- Version of the KUKA System Software
- Optional software or modifications
- Archive of the software
- Application used
- Any external axes used
- Description of the problem, duration and frequency of the fault

Faults leading to production downtime are to be reported to the local KUKA subsidiary within one hour of their occurrence.

8.2 KUKA Customer Support

Availability
KUKA Customer Support is available in many countries. Please do not hesitate to contact us if you have any questions.

Argentina
Ruben Costantini S.A. (Agency)
Luis Angel Huergo 13 20
Parque Industrial
2400 San Francisco (CBA)
Argentina
Tel. +54 3564 421033
Fax +54 3564 428877
ventas@costantini-sa.com

Australia
Marand Precision Engineering Pty. Ltd. (Agency)
153 Keys Road
Moorabbin
Victoria 31 89
Australia
Tel. +61 3 8552-0600
Fax +61 3 8552-0605
robotics@marand.com.au
Austria
KUKA Roboter GmbH
Vertriebsbüro Österreich
Regensburger Strasse 9/1
4020 Linz
Austria
Tel. +43 732 784752
Fax +43 732 793880
office@kuka-roboter.at
www.kuka-roboter.at

Belgium
KUKA Automatisering + Robots N.V.
Centrum Zuid 1031
3530 Houthalen
Belgium
Tel. +32 11 516160
Fax +32 11 526794
info@kuka.be
www.kuka.be

Brazil
KUKA Roboter do Brasil Ltda.
Avenida Franz Liszt, 80
Parque Novo Mundo
Jd. Guançã
CEP 02151 900 São Paulo
SP Brazil
Tel. +55 11 69844900
Fax +55 11 62017883
info@kuka-roboter.com.br

Chile
Robotec S.A. (Agency)
Santiago de Chile
Chile
Tel. +56 2 331-5951
Fax +56 2 331-5952
robotec@robotec.cl
www.robotec.cl

China
KUKA Flexible Manufacturing Equipment (Shanghai) Co., Ltd.
Shanghai Qingpu Industrial Zone
No. 502 Tianying Rd.
201712 Shanghai
P.R. China
Tel. +86 21 5922-8652
Fax +86 21 5922-8538
Franz.Poeckl@kuka-sha.com.cn
www.kuka.cn
Korea
KUKA Robot Automation Korea Co. Ltd.
4 Ba 806 Sihwa Ind. Complex
Sung-Gok Dong, Ansan City
Kyunggi Do
425-110 Korea
Tel. +82 31 496-9937 or -9938
Fax +82 31 496-9939
info@kukakorea.com

Malaysia
KUKA Robot Automation Sdn Bhd
South East Asia Regional Office
No. 24, Jalan TPP 1/10
Taman Industri Puchong
47100 Puchong
Selangor
Malaysia
Tel. +60 3 8061-0613 or -0614
Fax +60 3 8061-7386
info@kuka.com.my

Mexico
KUKA de Mexico S. de R.L. de C.V.
Rio San Joaquin #339, Local 5
Colonia Pensil Sur
C.P. 11490 Mexico D.F.
Mexico
Tel. +52 55 5203-8407
Fax +52 55 5203-8148
info@kuka.com.mx

Norway
KUKA Sveisanelegg + Roboter
Bryggeveien 9
2821 Gjøvik
Norway
Tel. +47 61 133422
Fax +47 61 186200
geir.ulsrud@kuka.no

Portugal
KUKA Sistemas de Automatización S.A.
Rua do Alto da Guerra nº 50
Armação 04
2910 011 Setúbal
Portugal
Tel. +351 265 729780
Fax +351 265 729782
kuka@mail.telepac.pt
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Email(s)</th>
<th>Website(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>KUKA-VAZ Engineering</td>
<td>Tel. +7 8482 391249 or 370564</td>
<td><a href="mailto:Y.Klychkov@VAZ.RU">Y.Klychkov@VAZ.RU</a></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jushnoje Chaussee, 36 VAZ, PTO</td>
<td>Fax +7 8482 736730</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>445633 Togliatti</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Russia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +7 8482 391249 or 370564</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +7 8482 736730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Jendamark Automation LTD (Agency)</td>
<td>Tel. +27 41 391 4700</td>
<td><a href="http://www.jendamark.co.za">www.jendamark.co.za</a></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76a York Road</td>
<td>Fax +27 41 373 3869</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>North End</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6000 Port Elizabeth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>South Africa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>KUKA Sistemas de Automatización S.A.</td>
<td>Tel. +34 93 814-2353</td>
<td><a href="mailto:Comercial@kuka-e.com">Comercial@kuka-e.com</a></td>
<td><a href="http://www.kuka-e.com">www.kuka-e.com</a></td>
</tr>
<tr>
<td></td>
<td>Pol. Industrial</td>
<td>Fax +34 93 814-2950</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Torrent de la Pastera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carrer del Bages s/n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08800 Vilanova i la Geltrú (Barcelona)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +34 93 814-2353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +34 93 814-2950</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>KUKA Svetsanläggningar + Robotar AB</td>
<td>Tel. +46 31 7266-200</td>
<td><a href="mailto:info@kuka.se">info@kuka.se</a></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Odhners gata 15</td>
<td>Fax +46 31 7266-201</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>421 30 Västra Frölunda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +46 31 7266-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +46 31 7266-201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>KUKA Roboter Schweiz AG</td>
<td>Tel. +41 44 74490-90</td>
<td><a href="mailto:info@kuka-roboter.ch">info@kuka-roboter.ch</a></td>
<td><a href="http://www.kuka-roboter.ch">www.kuka-roboter.ch</a></td>
</tr>
<tr>
<td></td>
<td>Riedstr. 7</td>
<td>Fax +41 44 74490-91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8953 Dietikon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Taiwan: KUKA Robot Automation Taiwan Co. Ltd.
136, Section 2, Huanjung E. Road
Jungli City, Taoyuan
Taiwan 320
Tel. +886 3 4371902
Fax +886 3 2830023
info@kuka.com.tw
www.kuka.com.tw

Thailand: KUKA Robot Automation (M)SdnBhd
Thailand Office
c/o Maccall System Co. Ltd.
49/9-10 Soi Kingkaew 30 Kingkaew Road
Tt. Rachatheva, A. Bangpli
Samutprakarn
10540 Thailand
Tel. +66 2 7502737
Fax +66 2 6612355
atika@ji-net.com
www.kuka-roboter.de

UK: KUKA Automation + Robotics
Hereward Rise
Halesowen
B62 8AN
UK
Tel. +44 121 585-0800
Fax +44 121 585-0900
sales@kuka.co.uk

USA: KUKA Robotics Corp.
22500 Key Drive
Clinton Township
48036 Michigan
USA
Tel. +1 866 8735852
Fax +1 586 5692087
info@kukarobotics.com
www.kukarobotics.com
Index

Numbers
73/23/EEC 32
89/336/EEC 32
97/23/EC 32
98/37/EC 32

A
Accessories 15
Applied norms and regulations 32
Areas of application 9
AUT 18, 19
AUT EXT 19
Automatic 18, 19
Automatic External 19
Automatic mode 30
Axis range 15
Axis range limitation 25
Axis range monitoring 25

B
Brake defect 27
Braking distance 15, 22
Braking, path-maintaining 16, 21
Braking, path-oriented 16, 21

C
CE mark 14
Characteristics 9
Cleaning work 30
Communication 9
Communication parameters, setting 65
Communication parameters, ST_ETHERNET 50
Configuration file, definition 49
Connecting cables 14
Connection for external enabling switch 23
Correction system, setting 61, 65
Counterbalancing system 31

D
Danger zone 15
Declaration of conformity 14
Declaration of incorporation 13, 14
Decommissioning 31
Designated use 14
Diagnosis 71
Disposal 31
Documentation, robot system 7
Drives OFF 18
Drives ON 18

E
EC declaration of conformity 14
EMC Directive 14, 32
EMERGENCY STOP 20, 26
EMERGENCY STOP button 22, 23, 24
EMERGENCY STOP function 30
EN 418 32
EN 55011 32
EN 563 32
EN 60204-1 32
EN 61000-4-4 32
EN 61000-4-5 33
EN 61000-6-2 33
EN 61000-6-4 33
EN 614-1 32
EN 61800-3 33
EN 775 32
EN 954-1 32
EN ISO 10218-1 33
EN ISO 12100-1 33
EN ISO 12100-2 33
Enabling 18
Enabling switches 23, 24
ERXDemo.src 61
ERXDemo_1.src 65
ESC 18
Ethernet 8
Example 59
External axes 15
External axis 16
External EMERGENCY STOP 18
External safeguards 26

F
Faults 27
Firewall 29
Function test 28
Functions 9

G
General safety measures 27
Guard interlock 22

H
Hazardous substances 31

I
Inputs, linking 56
Installation 35
Installation, KUKA.Ethernet RSI XML 36
Instance parameters, ST_COROB 39, 40
Instance parameters, ST_ETHERNET 45, 46
Introduction 7
IP address, displaying 71
IP address, modifying 37

J
Jog mode 24

K
KCP 14, 15, 27
KCP coupler 25
Keyboard, external 27
KRL program, ERXDemo.src 61
KRL program, ERXDemo_1.src 65
KUKA Customer Support 73

L
Labeling 26
Liability 13
Linear unit 15
Local EMERGENCY STOP 18
Low Voltage Directive 14, 32

M
Machinery Directive 14, 32
Maintenance 30
Manual High Velocity 18, 19
Manual Reduced Velocity 18, 19
Mechanical axis range limitation 25
Mechanical end stops 24
Mode selector switch 18, 19
Mouse, external 27

N
Network address, setting 61
Network security 29

O
Object ID 8
Object inputs, ST_COROB 42
Object inputs, ST_ETHERNET 51
Object outputs, ST_COROB 43
Object outputs, ST_ETHERNET 54
Object parameters 8
Object parameters, ST_COROB 39, 41
Object parameters, ST_ETHERNET 46, 48
Operating modes 18, 24
Operator 17
Operator safety 18, 22, 24
Options 15
Outputs, linking 58
Overload 27
Overview of the safety features 18
Overview, KUKA.Ethernet RSI XML 9

P
Panic position 23, 24
Parser 8
Path-maintaining 16, 21
Path-oriented 21
path-oriented 16
PCI slot assignment 35
Personnel 16
Ping 71
Positioner 15
Pressure Equipment Directive 31, 32
Preventive maintenance work 30
Product description 9
Programming 29, 39

R
Ramp-down braking 16, 21
Read function, activating 52
Reduced velocity, program mode 24
Reinstallation, KUKA.Ethernet RSI XML 37
Release device 25
Repair 30
Required knowledge and skills 7
Robot 14, 22
Robot controller 14, 29
Robot system 13, 14, 16
RSI context 8
RSI object 8
RSI object, ST_COROB 39
RSI object, ST_ETHERNET 45

S
Safety 13
Safety features 24
Safety fences 26
Safety gates 26
Safety instructions 7, 13
Safety logic 18
Safety zone 16, 21, 22
Safety, general 13
Sample application 59
Sample application, implementing 59
Sample source code 69
Server application 69
Server program, Server_ERX.exe 59
Server_ERX.exe 59
Service, KUKA Roboter 73
Setting 29
Short-circuit braking 21
Simulation 29
Software 15
Software limit switches 24
ST_COROB, configuring 41
ST_COROB, creating 40
ST_COROB, object inputs 42
ST_COROB, object outputs 43
ST_ETHERNET, configuring 47
ST_ETHERNET, creating 46
ST_ETHERNET, linking 56
ST_ETHERNET, object inputs 51
ST_ETHERNET, object outputs 54
Start-up 28
STOP 0 16, 20
STOP 1 16, 20
STOP 2 16, 20
Stop reactions 20
Storage 31
Structure, XML string, ERXDemo.src 62, 64
Structure, XML string, ERXDemo_1.src 65, 67
Support request 73
System integrator 14, 16, 17
System requirements 35

T
T1 16, 18, 19
T2 16, 18, 19
Target group 7
TCP/IP 8
Teach pendant 14
Telnet, diagnosis 71
Terms 8, 15
Terms used 8, 15
Testing the network card, VxWorks 71
Top-mounted cabinet 15
Trademarks 7
Training program 7, 17
Transport position 28
Transportation 28
Two-axis positioner 15

U
UDP/IP 8
Uninstallation, KUKA.Ethernet RSI XML 37
Use, contrary to designated use 13
Use, improper 13
User 15, 16

V
Virus protection 29

W
Warnings 7, 13
Working range limitation 25
Workspace 15, 21, 22
Write function, activating 55

X
XML 8
XML string, structure, ERXDemo.src 62, 64
XML string, structure, ERXDemo_1.src 65, 67