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Abstract 
 

The National Academies of Science, Engineering, and Medicine recommend that interdisciplinary 

education be evaluated against relevant criteria such as the number of students from the general 

population (i.e., from outside the instructor’s department) and the mix of students. How is a department, 

program, or institution to quantify the multidisciplinarity of a class or student team? The number of 

majors is a simple metric, but it does not capture cognitive distance between majors. Beyond the number 

of majors and cognitive distance, a measure should also account for the proportion of students in each 

discipline. To describe the multidisciplinarity of educational programs, we propose the use of the Rao-

Stirling diversity index, which has been used to quantify the multidisciplinarity of research papers, 

authors, research centers, departments, and institutions. The index requires a measure of distances 

between categories, in this case students’ majors. In studies on university research, bibliometric measures 

are used to determine distances between Web of Science categories, but the categories do not map well to 

undergraduate student majors. In this paper, we develop a measure of distance between majors at a 

research institution based on overlap in courses required in each major, and on cross-listings of courses 

between departments. The distance measures were then used to calculate Rao-Stirling Diversity indexes 

for 3 multidisciplinary student teams (N = 85; each team included 12-55 students, 5-7 majors, and majors 

from 2-5 colleges). Results are interpreted and discussed, along with limitations and future directions. 

 

Introduction 

 

The world faces intersecting technological and societal challenges that continue to grow in 

complexity, and solutions to these increasingly complex problems require collaboration between 

multiple disciplines [1], [2]. On a grand scale, problems include climate change, epidemics, 

poverty, social unrest, and energy production/storage/transmission/use. On smaller scales, 

progress in a wide range of contexts also requires expertise from multiple fields. In medicine, 

multidisciplinary teams can more effectively relieve the pain, symptoms, and stress experienced 

by patients with serious illnesses [3]. To build transportation systems that equitably serve 

communities, transportation planners and engineers are being called to collaborate with social 

workers and the communities they serve [4]. To develop artificial intelligence systems with 

effective human-AI interaction, collaboration is needed between computer scientists, systems 

engineers, human factors engineers, and socio-technical researchers [5]. 

 

Multidisciplinary collaborations leverage perspectives from different backgrounds, which leads 

to new interpretations, deeper and broader understandings, and prevents “lock-ins” of business as 

usual [2, p. 72]. Beyond solving specific problems, members of multidisciplinary teams also 

learn from each other, increasing team members’ agility in problem-solving [2]. If college 

graduates are to work effectively in multidisciplinary teams, cross-disciplinary collaboration 

must be incorporated into higher education. The National Academies in the United States have 

called on institutions to support interdisciplinary education and training for students, postdoctoral 

scholars, faculty, and researchers, and they encourage students to seek out interdisciplinary 

experiences [6], [7]. In the 47-country European Higher Education Area, ministers of education 

maintain that to contribute to the wider needs of society, college graduates need transversal, 

multidisciplinary skills [8]. As a result, the Higher Education Area is working to adopt 

multidisciplinary approaches that enable students to contextualize technological problems in 



cultural, socio-economic, political, and environmental terms [9]. Calls for multidisciplinary 

education are not heard only from above: “Students, especially undergraduates, are strongly 

attracted to interdisciplinary courses, especially those of societal relevance” [6, p. 2]. 

 

Systems have been developed to assess interdisciplinarity in research to inform policy makers 

[2]. If multidisciplinary education is also of value, how can it be measured? The National 

Academies recommend that interdisciplinary education be evaluated against relevant criteria, 

such as the number of students from the general population (i.e. from outside the instructor’s 

department) and the mix of students [6], but measures are open to interpretation. If a student 

team includes electrical engineering students and computer engineering students, is it 

multidisciplinary? What if both majors were (or were not) housed in the same department? In 

this paper, we propose applying the Rao-Stirling diversity index to measure the 

multidisciplinarity of student teams. The index is already used to quantify the interdisciplinarity 

of institutions, research centers, departments, and individuals. The index accounts for team 

composition by category, and for cognitive distances between categories. In our implementation, 

the units of analysis are student teams, categories are student majors, and the relative difference 

between majors is based on curricular overlap and course cross-listings between departments, a 

novel application of the index.  

 

Background 

 

Defining Multidisciplinarity 

 

Searches of EBSCO Academic Search Complete show nearly linear increases in use of the terms 

multidisciplinary, interdisciplinary, and transdisciplinary from 1960 onward (Fig. 1). The 

increase occurs across the full database as well as in the higher education domain, with a steeper 

increase in higher education. The terms are often used interchangeably. The National Academies 

of Sciences, Engineering and Medicine define interdisciplinary research as a mode of research 

that incorporates knowledge/tools/concepts/etc. from multiple disciplines [6]. Klein places the 

terms multidisciplinary, interdisciplinary, and transdisciplinary on a continuum, with 

multidisciplinarity associated with juxtaposing or coordinating; interdisciplinarity involving 

blending and linking; and transdisciplinarity transcending boundaries [11]  

 

This study focuses on the composition of student teams, with no assumptions on the degree to 

which ideas are integrated. To this end, the term multidisciplinarity will be used to refer to the 

balance of and cognitive distances between majors of students within a student team. The 

study builds on methods used in measures of interdisciplinary research, so references to those 

methods will use the term interdisciplinary, consistent with writings in that area. With that 

clarification given, Rousseau et al. place minimal emphasis on terminology, “Although some 

researchers make a distinction between the terms interdisciplinary, multidisciplinary, 

transdisciplinary and cross-disciplinary research, in empirical studies one finds a continuum 

which makes it difficult to distinguish among these modes” [2, p. 70]. 

 



 
Framework for Measuring Multidisciplinarity 

 

Measurement and evaluation of interdisciplinary research are distinctly different activities [2]. 

The two can be loosely compared to measurement of an athlete and performance evaluations of 

the athlete. Physical measures might include height, weight, or muscle to body mass ratio. 

Performance evaluations might involve speed, accuracy, or points scored. Evaluation of 

interdisciplinary collaboration is more complex than a measure. Evaluation requires 

consideration and assessment of goals, processes, and outcomes [12]. (For a detailed framework 

on evaluation of interdisciplinary research, see [12]). This paper focuses only on the 

measurement of multidisciplinarity.  

 

Substantial research has been done on the relationships between different fields of research and 

the intersections between distinct areas. In the field of scientometrics, researchers study the 

disciplinary structures of scientific literature through the analysis of publications (bibliometrics) 

[13], [14]. Connections between disciplines (interdisciplinarity) is studied through the lens of 

diversity, employing metrics from ecology: species richness (number of species in an ecosystem) 

and species evenness (balance in quantities of species). An ecosystem with two species (measure 

of richness) might have one kind of frog and one kind of fly. Two such systems could have very 

different balances, with 100 flies for every frog (a good day for the frogs), or 100 frogs for every 

fly (a bad day for the flies). In literature on interdisciplinary measures, these metrics are referred 

to as variety (instead of richness) and balance (instead of evenness). Porter & Rafols maintain 

that beyond these, a measure of interdisciplinarity should also account for the relative distance 

between each discipline [15]. For example, our two-species ecosystem with flies and frogs would 

be very different from a two-species ecosystem with red frogs and green frogs but no flies. As 

Rafols [16] observed, “There is more diversity in a project including cell biology and sociology 

than in one including cell biology and biochemistry” (p. 173). A relative distance must be 

incorporated into measures of interdisciplinarity to capture the difference.  

 

 
Fig. 1. Percent of Peer-Reviewed Papers in Ebsco Academic Search Complete with 
Multidisciplinary, Interdisciplinary, or Transdisciplinary in any Searchable Field 
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Measurement approaches can be top-down, relying on existing categorizations (disciplines 

instead of species); or bottom-up, using data on each individual in the system (keywords in each 

paper, analogous to the length of each frog’s legs, although that method is not used in ecology) 

[2]. A top-down approach to measuring the multidisciplinarity of student teams would be to 

categorize students by major, and to treat students from a given major the same. A bottom-up 

approach would be to compare all courses taken by each student in a given team. The top-down 

approach would involve analysis of degree requirements, whereas the bottom-up approach would 

involve analysis of every student’s transcript. While the bottom-up approach would be more 

accurate, it would be labor-intensive, and resulting measures would be specific to the given 

students. With a top-down approach, relative distances can be measured once, and then the 

newly developed metric can be applied to any number of teams. In this study, we chose to use a 

top-down approach, with the long-term goal of developing metrics that can be applied in many 

contexts. 

 

Top-down bibliometric measures typically rely on the Web of Science (WoS) categories 

maintained by Clarivate Analytics, which assigns research fields to journals and books [2], [17], 

[18]. A paper on a biomedical device might cite articles from journals categorized under 

biomedical engineering, mechanical engineering, and physiology. This represents the knowledge 

integration process, because the citations document the knowledge that informed the production 

of new ideas [2]. Another categorization that can be used in a top-down approach is the 

researchers’ field of study [2]. A challenge with this method is that organizational groupings may 

not align with research fields. For example, a biology department could include faculty in 

multiple WoS research fields – Cell biology, Evolutionary Biology, Microbiology, etc. 

Additionally, a researcher may work in more than one field of study. (An exception to this 

obstacle is Italy, where the Ministry of Education, University, and Research requires academic 

scientists to classify themselves under one of 370 fields in 14 disciplinary areas [19].) 

 

Measures of interdisciplinarity can be based on inputs, such as researchers’ fields of study; 

processes, which can include fields that informed the research; or outputs, such as publications 

and patents [2], [18]. We propose using the Rao-Stirling diversity index to measure 

multidisciplinarity in educational contexts. When applied to a lecture-style class (a context in 

which students would not collaborate), the index would describe the diversity of students 

attracted to the course, which would be an output of course development and course 

listings/recruiting. When applied to a student team or project, as in this paper, the index would 

represent output of course development and recruiting as well as inputs for the team’s work.  

The Rao-Stirling diversity index is based on the proportion of cases from each category and the 

relative distance between categories. The index can be expressed as Equation 1, where dij 

represents the distance between categories i and j, pi and pj represent the proportion of units from 

categories i and j, and the summation is done over half of the matrix (i > j) [20]. The expression 

is also known in ecology as the distance-weighted Simpson diversity, and in economics as the 

Herfindahl-Hirschman index [16]. The index can be used to describe the interdisciplinarity of 

individual papers [21], journals [22], institutions [23], and entire fields [15]. Because the index is 

based on proportions and distances, a small team and a large team could have the same index if 

their proportions and disciplinary distances were the same. 

 



𝐷 = ∑ 𝑑𝑖𝑗𝑝𝑖𝑝𝑗𝑖,𝑗(𝑖>𝑗)         (1) 

 
Student major is an obvious category, but defining the distances between categories can be 

challenging [2]. While there are global maps of science and relative distances for WoS 

categories, the categories do not map well to undergraduate degree programs. A biology 

department may offer a single undergraduate degree in biology, but the WoS has 10 biology 

categories. Conversely, a university may offer multiple programs of study in modern languages, 

but the WoS has only one category for language and linguistics. 

 

The distance measure is supposed to represent cognitive distance between majors. If similarity 

between majors can be quantified, the similarities can be used to compute relative distances. We 

propose using two measures of similarity: overlap in degree requirements, and cross-listings 

between departments. Similarity by curricular overlap is intuitive. If two majors require the same 

course, the curricular overlap represents similarity. For example, if two majors require a 9-credit 

hour physics sequence, the degree programs would have 9 credit hours of similarity.  

 

Beyond specific degree requirements, cognitive distance can also be seen in cross-listings 

between departments. For example, at the Georgia Institute of Technology, three physics courses 

are cross-listed with courses in other departments (Table I). In physics, the courses can be used 

as technical electives under the “any PHYS or Technical Electives” requirement [24]. In the 

degree requirements for the other majors, the courses are listed under the subject code of the 

listing majors’ departments. If the degree requirements were compared, the cross-listed courses 

would not be counted as curricular overlap. Additionally, because cross-listed courses can be 

taught by faculty in either department, they represent a high level of cognitive similarity.  

 

Along the same lines as cross-listings, when majors in a single department use the same subject 

code, they draw on the same pool of in-major electives. For example, the Georgia Tech 

Department of Civil and Environmental Engineering uses a single subject code, CEE, but the 

department offers two majors, Civil Engineering and Environmental Engineering. Students from 

both majors choose in-major electives from the same pool of courses, but the similarity would 

not be reflected in degree requirements. The clustering of majors in departments can be extended 

to programs jointly offered by multiple departments. A degree jointly offered by two 

departments would be similar to other majors offered by the two sponsoring departments, even if 

the majors from the sponsoring departments differed from each other. For example, Georgia 

Tech’s degree in Computational Media is jointly offered by the College of Computing and the 

School of Literature, Media, and Communication. Computational Media is similar to both 

Computer Science and to Literature, Media, and Communications, but Computer Science is not 

necessarily similar to Literature, Media, and Communications. Similarity by organizational 

structures was incorporated into the similarity by cross-listings scale, as described in the methods 

section. 

TABLE I. Cross-listed Physics Courses 
Physics Course Cross-listed with Used in Physics as Used in Other Major as 

Physics of the Weather Earth and Atmospheric Sciences Elective Elective 
Laser Theory and Applications Electrical Engineering Elective Elective 
Quantum Information and    
     Quantum Computing 

Mathematics Elective Elective 

 



Methods 

 

To apply the Rao-Stirling diversity index, Rafols recommends a four-step process: choosing the 

unit of analysis; classifying elements into categories; capturing relationships between categories; 

and generating visualizations [16]. In the following write-up, the development of a distance 

measure is treated as a method, and the diversity index calculations are treated as results. 

 

Units of Analysis 

 

The units of analysis in the study were multidisciplinary student teams in the Vertically 

Integrated Projects (VIP) Program at Georgia Tech in Spring 2020. In VIP, student teams are 

embedded in faculty research projects. Students earn academic credit and can participate for 

multiple semesters, supporting leadership development; faculty benefit from their teams’ work, 

which supports long-term faculty engagement; and the model is in place at 40+ institutions 

around the world [25], [26]. In Spring 2020, the Georgia Tech VIP Program enrolled 1,231 

students in 80 teams. Because the focus of the study was on development of a multidisciplinary 

measure and not an evaluation of the VIP Program, diversity indexes were computed and 

visualizations generated for three teams, to examine the composition of teams with low, medium, 

and high diversity indexes. The three teams ranged in size from 12 to 55 students. 
 

Categories 

 

Categories in the analysis were student majors. To limit the scope of the study, disciplinary 

distances were only computed for majors represented in the program-wide sample. In Spring 

2020, the VIP Program enrolled students from 33 of the institution’s 36 majors, with 48% from 

the College of Engineering, 37% from Computing, 8% from Science, 3% from Liberal Arts, 2% 

in joint programs, 1% from Design, and 1% from Business. The imbalance across colleges is due 

in part to the composition of the institution, which is technological, and to how VIP credits count 

toward requirements in different degree programs [27]. Although three majors were excluded 

(Applied Physics; Discrete Mathematics; and Global Economics and Modern Languages), they 

were similar to majors in the program-wide sample (Physics; Mathematics; and Economics). 

 

Distance Measure 

 

With student majors as the categories, credit hours were the basis of the distance measure. If the 

proposed method for measuring multidisciplinarity is to be used at other institutions, differing 
academic calendars (quarters, trimesters, etc.) and variation in units representing courses (credit 

hours, credit points, etc.) would make comparisons of raw totals difficult. An intuitive similarity 

metric would be 0 for students in completely unrelated majors, and 1 for students in the same 

major. Subtracting a 0-1 similarity measure from 1 would yield disciplinary distances of d = 0 

for students in the same major, and d = 1 for students in entirely unrelated majors.  

 

Relationships between student degree programs can be observed in two general areas: curricular 

overlap and cross-listings. The two measures of similarity were calculated for each pair of 

majors, scaled to a range of 0-1 (not similar to very similar), and averaged for each major 



pairing. The single scaled similarity measure for each pair of majors was then subtracted from 1 

to yield a scaled distance of 0-1 (no difference to very different) for each pair. 

 

Social network diagrams were generated to illustrate closeness between academic majors. 

UciNet was used to convert the data to NetDraw-readable files, and NetDraw was used to 

generate diagrams. Three diagrams were generated: closeness by curricular overlap; closeness by 

cross-listings; and closeness by the combined scale. 

 

Similarity by Curricular Overlap 

 

Curricular overlap refers to overlap in required and elective course credits in two majors. 

Required courses are the simplest to tally. If all engineering students are required to take Physics 

101, all of the majors would have those 3 credits in common. To account for requirements that 

can be met by a variety of courses, weighting was used. If a degree program required three 

courses from a list of five options, if students chose their courses randomly  

(which we hope they do not), each course in the list would have a 3 in 5 chance of being chosen. 

A required course would have a weight of 1, and each course in the “choose 3 from 5” list would 

have a weight of 0.6. If options for a requirement were open-ended, such as any 3000-level 

course from the department, no courses were included in the overlap analysis. If options for a 

requirement included a list of courses along with an open-ended option, only courses that were 

listed were included. Courses that were required of all majors were not included. This included 

health (2 credits), English composition (6 credits), social sciences (12 credits), various versions 

of calculus (4 credits), and various versions of introduction to computing (3 credits). 

 

To calculate curricular similarity, a table of degree requirements was generated with three 

columns for each major: subject code and course number, course name (used for reference, not 

used in analysis), and weighted credit hours. When multiple versions a of the major were offered, 

the general version was used if one was offered. If a general version of the major was not 

offered, courses across the multiple versions were weighted. When courses were listed as 

equivalences in degree requirements, instead of splitting the weight of the course, the primary 

course was included in the main list of requirements, and the equivalent course was included in a 

corresponding list of alternatives/equivalents for the major.  

 

A matrix of major-to-major curricular overlap tallies was generated in excel. In comparing major 

A and major B, the main list of requirements for major A was compared with the main and 

alternatives/equivalents list for major B. The comparison was then reversed. If the tallies 

disagreed, which occurred when one major accepted an alternative for a course and the other did 

not, the highest tally was used. 

 

Totals for curricular overlap ranged from 0 to 61 credits, with a mean of 10 and a median of 5. 

The majors with the fewest credits in common with others were Applied Languages and 

Intercultural Studies; and Literature, Media, and Communication (4 credits in common with 

many majors, but none in common with engineering or computer science). Engineering and 

physics majors had the largest overlap with other majors (15-18 credits on average). The largest 

overlaps were between Environmental Engineering and Civil Engineering (61 credits), which are 



housed in the same department; and Electrical Engineering and Computer Engineering (54 

credits), also housed in the same department. 

 

Self-to-self curricular overlaps were also tallied. Self-to-self overlap was high in prescriptive 

programs (131 credits in Industrial Engineering, and 101 in Materials Science Engineering), and 

low in programs with high curricular flexibility (7 credits in Applied Languages, and 19 in 

Economics). The mean was 67, and the median was 71. Because we defined distance as 0 for 

students from the same major, all self-to-self overlap values were set to the median self-to-self 

value of 71 (ensuring the scaled similarity measure would be 1 for self-to-self pairings). This 

kept highly prescriptive majors from skewing the scale, and it ensured that students from the 

same major would be handled in the same way (perfect similarity, zero distance), regardless of 

the prescriptiveness of their program. 

 

Social network diagrams were generated to interpret results of the curricular overlap tallies. 

NetDraw offers a variety of graphing methods and settings. For the curricular overlap diagram, 

the most readable output was obtained by drawing an initial diagram with scaling ordination, and 

then using the non-metric multidimensional scaling of geometric distance layout (Fig. 2). This 

produced expected clusters, with majors offered by the same departments appearing in pairs 

(International Affairs major near the Modern Languages and International Affairs major; Civil 

Engineering near Environmental Engineering; etc.). When produced multiple times, the diagrams 

were slightly different, but general patterns were consistent. In the diagram, thicker lines 

represent greater curricular overlap. For example, the line between Applied Languages and 

Intercultural Studies (red, lower left) and Business (purple, center) is thin and represents 4 

credits. Most of the lines emanating from Music Technology (orange, top) and going to 

engineering majors (blue) are thick and represent 12-19 credits. 

 

 
Fig. 2. Similarity by Curricular Overlap 

 Liberal Arts   Business  Engineering  Design  
 Joint Program   Computing  Sciences   



Similarity by Cross-listings 

 

Beyond curricular overlap, closeness between majors can be seen in course cross-listings. 

Courses are listed in the course catalog by subject code, and listings include cross-listings. To 

build the cross-listing matrix, majors included in the study were recorded by the subject code 

used for their major courses. A table was generated for each subject code with four columns: 

listing department subject code, course number, cross-listed department subject code, and credit 

hours. This created complimentary entries when the catalog consistently cross-listed courses to 

and from each subject code. To determine the number of credits cross-listed between two subject 

codes, cross-listed credits were summed for each cross-listing direction (major A to major B, and 

then major B to major A), and the maximum sum was used. 

 

Of the 33 majors, 12 majors had no cross-listings with other majors. Of those with cross-listings, 

totals ranged from 3 to 46 credits, with a mean of 12 and a median of 10. To account for majors 

that draw their in-major electives from the same subject-code pool, values for majors offered by 

the same department were set to the maximum observed cross-listing value, which was 46 

credits. The same was done for majors offered jointly by two departments, numerically linking 

 

 
 
 
Fig. 3. Similarity by Cross-Listings 
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the joint major with the majors in the sponsoring departments. A self-to-self value needed to be 

set, because a major would have more similarity with itself than with others. A variety of values 

were selected and tested to determine the impact of different self-to-self values on the final 

combined scale. A final self-to-self value of 50 was selected (approximately 10% higher than the 

maximum observed cross-listing value), because it yielded a combined-scale diagram with 

expected clusters. For example, in the curricular overlap visualization, aerospace engineering 

was consistently clustered with civil and environmental engineering. Civil and Environmental 

were expected to be closer to each other than to Aerospace. With a self-to-self cross-listing value 

of 50 credits, the Civil and Environmental were consistently clustered, with Aerospace nearby. 

To scale the similarity by cross-listings measure to 0-1, as with the curricular overlap scale, 

values were divided by the maximum value (the self-to-self value) in the matrix. 

 

The NetDraw settings used to generate the curricular overlap diagram did not work well in the 

cross-listing diagram, because clusters were too tight and obscured labels. To get a readable 

diagram (Fig. 3), only scaling ordination was used. Line thickness represents tie strength. 

 
Combined Distance Measure 
 

To obtain an overall similarity measure, the scaled curricular and cross-listing similarities were 

averaged, which yielded similarity values ranging from 0 to 1 (not similar to very similar). 

Scaled similarities were then subtracted from 1 to yield distance measures ranging from 0 to 1 

(not different to very different). NetDraw settings used in the curricular overlap diagram worked 

well for the overall distance measure (Fig. 4). Again, thickness represents stronger ties. 

 

 

 

 
Fig. 4. Disciplinary Distance by the Combined Scale 

 Liberal Arts   Business  Engineering  Design  
 Joint Program   Computing  Sciences   



Diversity Indexes 

 

Using the scaled measure for disciplinary distances, Excel was used to calculate Rao-Stirling 

diversity indexes for three teams. Enrollment by major was used to select the three teams, with 

the intention of obtaining one low, one medium, and one high diversity index. The last step 

recommended by Rafols is to generate visualizations [16]. Science overlay maps are often used 

in assessment of interdisciplinary research, to show the relative distance between the fields of 

members of a team, in a center, etc. [28]. An overlay map was generated for each team, with 

node positions reflecting relative distances between majors in the global system, and node sizes 

representing occurrences of each major in the given team. The same scaling was used in each 

overlay map, so node sizes would be comparable across the diagrams. 

 

Results 

 

The three selected teams varied in size, number of majors, and number of colleges represented 

(Table II). Team size ranged from 12 to 55; number of majors ranged from 5 to 8; number of 

colleges ranged from 2 to 5; and diversity indexes ranged from 0.18 to 0.40 (Fig. 5). 

 

TABLE II. Team Compositions and Diversity Indexes for Selected Multidisciplinary Teams 

Team Name Students Majors Colleges Diversity Index 

Robotic Human Augmentation 55 5 2 0.18 
Health Informatics on FHIR 18 7 5 0.30 
Global Social Entrepreneurship 12 8 5 0.40 

  

 

Mid-level Index: Health Informatics on FHIR VIP Team 

 

The Health Informatics on FHIR team is led by Mark Braunstein from the School of Interactive 

Computing and Myung Choi from the Georgia Tech Research Institute, with co-instructors 

Laura Kollar and Paula Braun from the Centers for Disease Control and Prevention. The FHIR 

 

 
Fig. 5. Diversity Indexes for Selected Teams. Note: Circle represents team size. 
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(Fast Healthcare Interoperability Resources) standard sets specifications and rules for the 

exchange of electronic healthcare data. The Health Informatics on FHIR team develops apps for 

use by medical staff and patients to address problems posed by instructors, project partners, 

students, and sponsors. Partners and sponsors include the Children’s Health of Atlanta, the 

Centers for Disease Control and Prevention, and Emory University. 

 

The Health Informatics on FHIR team drew 18 students from 5 colleges, with:  

• College of Engineering: 9 from Industrial Engineering, 1 from Biomedical Engineering, 

and 1 from Electrical Engineering;  

• College of Computing: 4 from Computer Science;  

• College of Liberal Arts: 1 from Applied Languages and Intercultural Studies;  

• College of Business: 1 from Business Administration; and  

• College of Sciences: 1 from Neuroscience.  

This team had a diversity index of 0.30 (Fig. 6). 

 

 

Lower Index: Robotic Human Augmentation VIP Team 

 

The Robotic Human Augmentation team is led by Aaron Young in the School of Mechanical 

Engineering. It is one of the largest teams in the program, which is made possible by a sizeable 

group of graduate students who help coordinate subteams. The team develops powered 

prostheses and exoskeletons, with projects ranging from wearables that assist children with 

walking disabilities, to a hip exoskeleton that can help the wearer evade threats. 

 

 

 
Fig. 6. Health Informatics on FHIR: 18 students, 7 majors, Diversity Index of 0.30 

 Liberal Arts   Business  Engineering   
  Computing  Sciences   



The Robotic Human Augmentation team drew 55 students from 2 colleges: 

• College of Engineering: 26 from Mechanical Engineering, 14 from Biomedical 

Engineering, 7 from Electrical Engineering, and 4 from Computer Engineering; 

• College of Computing: 4 from Computer Science. 

The team had a diversity Index of 0.18 (Fig. 7). 
 

 

Higher Index: Global Social Entrepreneurship VIP Team 
 

The Global Social Entrepreneurship team was led by Kirk Bowman in the School of 

International Affairs in the College of Liberal Arts. The goal of the project was to identify 

social innovators in the global south; increase awareness of the innovators and their ongoing 

work to transform their communities; and generate resources to support/continue/expand their 

work. The team employed the sidekick model of global philanthropy and the Rise Up social 

entrepreneurship method. Products included high quality film, children’s books, and other media. 

The team is still in operation but changed its name in 2023 to Soccer, Community, Innovation, 

Politics. 

 
The Global Social Entrepreneurship team drew 12 students from 5 colleges, with:  

• College of Liberal Arts: 2 from International Affairs; 2 from Economics & International 

Affairs, and 2 from International Affairs and Modern Languages;  

• College of Computing: 2 from Computer Science; 1 from Computational Media (jointly  

administered by the College of Computing and the School of Literature Media and 

Communication);  

• College of Design: 1 from Architecture; 

 

 
Fig. 7. Robotic Human Augmentation: 55 students, 5 majors, Diversity Index of 0.18 
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• College of Sciences: 1 from Biology;  

• College of Engineering: 1 from Civil Engineering. 

This team had a diversity index of 0.40 (Fig. 8). 

 
Discussion 

 

This study involved two distinct components, development of a new measure for disciplinary 

distance between college majors, and use of the developed measure to calculate Rao-Stirling 

diversity indexes for three multidisciplinary student teams. 

 

Disciplinary Distance 

 

While measures of interdisciplinary research typically rely on bibliometrics and web of science 

categories, our disciplinary distances are based on undergraduate degree requirements, cross-

listings, and organizational structures that represent similarities between majors. A strength of 

the distance measure is that it is based primarily on measurable aspects of the curriculum. The 

two subjective aspects were how to handle self-to-self values in both similarity measures 

(curricular and cross-listings/organizational), and how to weight the two similarity measures in 

the combined measure. In the curricular overlap measure, we set all self-to-self values to the 

median observed self-to-self value. A strength of this approach is that it kept highly prescriptive 

degree programs from skewing the scaled measure. A weakness is that information was lost – 

students from very flexible programs were treated the same as students from highly prescriptive 

programs. In the similarity by cross-listings measure, the self-to-self value was chosen through 

trial and error, to yield combined measures that made sense to the investigators. This enabled the 

 

 
Fig. 8. Global Social Entrepreneurship: 12 students, 8 majors, Diversity Index of 0.40 
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investigators to tune the final measure, which is both a strength (the measure needs to make 

sense) and a weakness (no longer an objective measure). In weighting, we chose to equally 

weight the curricular and cross-listing measures. The trial-and-error selection of the self-to-self 

value in the cross-listing measure was based on the final map for the combined measure with 

curricular and cross-listing similarity equally weighted. This may have corrected or obscured 

shortcomings in one measure or the other. 

 

The visualization of the curricular overlap scale (Fig. 2) showed clustering by college, with 

majors from the College of Liberal Arts (red) to the left; STEM majors to the right; and Business 

(purple) in the middle. One of the three majors in the College of Design (orange) is above the 

cluster of majors from the College of Engineering (blue), while the other three College of Design 

majors are below the Engineering cluster. Majors from the College of Sciences (yellow) are to 

the right of the Engineering cluster, with one Engineering major in the Sciences area. The single 

major from the College of Computing (green) is near the major jointly offered (black) by the 

College of Computing and the School of Literature, Media and Communication in the College of 

Liberal Arts (red). Averaging the curricular overlap and organizational structures scales resulted 

in looser clustering (Fig. 4). Sciences majors became further removed from the Engineering 

cluster, but Chemical and Biomolecular Engineering stayed to the right, near Chemistry. 

 

A weakness of visualizations is that the numeric distance measures cannot be accurately 

represented in a 2 (or even 3) dimensional space. For example, in Fig. 4, Aerospace Engineering 

is closer to Material Sciences Engineering than it is to Mechanical Engineering, but in the 

numeric scale Aerospace is most similar to Mechanical Engineering (D = 0.57). Similarly, the 

thick line between Literature, Media and Communications and Computational Media represents 

a strong tie (D = 0.49), but similarities/differences with other majors leaves the two quite far 

apart in the visualization. 

 

A limitation of the disciplinary distance measure is that it is based on the curriculum and 

practices of a single institution. It is shaped by the groupings of majors within academic units; 

campus and department subject-code conventions; and collaboration between departments. For 

example, a technical writing course might be offered by an English/ Communications 

department, showing connections between all technical majors that make use of the class. If a 

technical department required their own version of the course under their own subject code, the 

apparent connection with other majors would disappear. The measure is especially sensitive to 

campus and department subject code conventions. If two majors are offered by the same 

department under the same subject code, they would have high similarity in the cross-listing 

component of the measure. However, if one of the two majors was highly prescriptive with no 

in-major electives, the assumed similarity would be unfounded. 

 
Diversity indexes 

 

Diversity indexes were calculated for three teams, and overlay maps generated for each. The 

progression from a high concentration of students in similar majors (Fig. 10a), to a wider range 

of majors with uneven concentrations (Fig. 10b), to a more even concentration of students across 

dissimilar majors (Fig. 10c) corresponds with increasing diversity indexes. 
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The loose correlation between diversity index and number of majors was expected, but there may 

also be an operational relationship between team size and diversity index. It may be easier for an 

instructor to scale-up a team when students are from similar fields of study. On the 55-student 

Robotic Human Augmentation team (D = 0.18), Mechanical Engineering graduate students help 

lead subteams, and all subteam students are from majors closely related to the project: 

Mechanical Engineering, Electrical Engineering, Computer Engineering, Biomedical 

Engineering, and Computer Science. Adding students from unrelated majors would add 

complexity to the project, which might make the large team size untenable.  

 

Conversely, teams composed of students from very different fields of study may have an upper 

limit on size. The 12-student Global Social Entrepreneurship team (D = 0.40) included students 

from five colleges as well as a jointly administered program. This requires the instructor to 

oversee work further outside of his/her expertise, which would involve additional effort. 

 

The team with the mid-level diversity index is an interesting case, because it has students from 

unrelated majors, but a high concentration of students from Industrial Engineering. This high 

concentration may bring core competencies to the team, while other disciplines extend the team’s 

range of expertise. 

 

Conclusion 

 

In this paper, we proposed a method for measuring the multidisciplinarity of student teams. We 

developed a measure for disciplinary distances between 33 degree programs at a research 

university. We then used the measure to calculate Rao-Stirling diversity indexes for three 

multidisciplinary student teams, along with visualizations of the distances between team 

members. Results for the three teams were presented alongside the contexts in which the teams 

formed/worked.  

 

The profiled projects emphasize the difference between the measurement and evaluation of 

multidisciplinarity. Three key elements of project-based learning are that projects focus on 

problems that are meaningful and important to the students; that students engage in “authentic, 

situated inquiry” in which they learn and apply knowledge from their disciplines; and that the 

collaboration between students, faculty, and partners emulates “the complex social situation of 

expert problem solving” [29, p. 318]. While they have very different Rao-Stirling diversity 

indexes, the work of all three profiled teams is worthwhile, and all three projects engage students 

in meaningful knowledge creation. The diversity indexes quantify the compositions of the teams, 

and they confirm the potential for complex social situations that can arise from working with 

people from different disciplinary backgrounds. To assess the degree to which teams achieve 

multidisciplinary interaction/collaboration, diversity indexes could be combined with social 

network analysis. Social network analysis has been used to describe the degree to which students 

cross disciplinary lines within multidisciplinary teams [30]–[32], and diversity indexes would 

add depth to these studies. 

 

The Rao-Stirling diversity index can be used to examine and showcase the multidisciplinarity of 

student teams, courses, and programs. The results would be of particular interest to 

administrators, sponsors, and prospective program participants. Development of the disciplinary 



distance measure was time consuming. To obtain a generalizable measure, measures could be 

calculated across a large number of institutions, and distributions, ranges, and outliers could be 

considered for each major-to-major distance. There would likely be substantial differences by 

country and region of the world, particularly between nations/regions with highly prescriptive 

and very liberal educational systems. The measure could feasibly be used to contextualize 

similarities and differences between educational systems. 

 

In the short-term, further analysis will be done on enrollments from Spring 2020, the semester 

for which disciplinary distances were developed. After doing a program-wide analysis on all 80 

teams, the measure will be updated to reflect curricular revisions. The subjective aspects of the 

measure will be reevaluated, as will the impact of curricular changes on the final scaled measure. 
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